K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng định lí Pytago ta có

\(DE^2=DF^2+FE^2\\ \Rightarrow DF=\sqrt{15^2-12^2}=9\)

22 tháng 3 2022

Xét tam giác DEF vuông tại F có:

     \(DE^2=EF^2+DF^2\) (Định lý Pytago)

=> \(15^2=12^2+DF^2\)

=> 225 = 144 + \(DF^2\)

=> \(DF^2=\) 225-144 = 81

=> DF = \(\sqrt{81}\) = 9

`@` `\text {dnammv}`

`a,`

Xét \(\Delta BED\) và \(\Delta CFD\) có:

\(\left\{{}\begin{matrix}\text{BD = CD (D là trung điểm của BC}\\\widehat{\text{B}}=\widehat{\text{C}}\left(\text{ }\Delta\text{ABC cân tại A}\right)\\\widehat{BED}=\widehat{CFD}\left(=90^0\right)\end{matrix}\right.\)

`=> \Delta BED = \Delta CFD (ch-gn)`

`-> \text {BE = CF (2 cạnh tương ứng)}`

`b,`

Vì `\Delta BED = \Delta CFD (a)`

`-> \text {DE = DF (2 cạnh tương ứng)}`

`\text {Xét}` `\Delta DEF:`

`\text {DE = DF}`

`-> \Delta DEF` là `\Delta` cân

`c,`

Vì \(\left\{{}\begin{matrix}\text{AB = AC (tam giác ABC cân tại A)}\\\text{BE = CF (a)}\end{matrix}\right.\)

`-> \text {AE = AF}`

\(\text{Xét }\Delta\text{ AEF}: \)

`\text {AE = AF}`

`-> \Delta AEF` là `\Delta` cân (tại A).

`->`\(\widehat {AEF}= \widehat {AFE}\)\(=\dfrac{180-\widehat{A}}{2}\text{ }\left(1\right)\)

`\Delta ABC` cân tại `A`

`->`\(\widehat {ABC}= \widehat {ACB}=\)\(\dfrac{180-\widehat{A}}{2}\text{ }\left(2\right)\)

Từ `(1)` và `(2)`

`->`\(\widehat {AEF}= \widehat {ABC}\)

Mà `2` góc này nằm ở vị trí đồng vị

`-> \text {EF // BC (tính chất 2 đường thẳng //).}`

loading...

 

 

a: Trực tâm là điểm D

b: EF=căn 3^2+4^2=5cm

c: DF=căn 10^2-6^2=8cm

14 tháng 2 2016

a) Dùng định lí py-ta-gô để chứng minh, ta thấy:
122 + 92 = 152
Vậy DEF là tam giác vuông. Tam giác này vuông tại E ( do DF là cạnh huyền )
b) Tia IE là tia đối của tia ED => 3 diểm I, E, D thẳng hàng và IE vuông góc với IF
Vậy cạnh cần tìm IF chính là cạnh huyền của tam giác vuông EFI.
Áp dụng định lí Pi-ta-gô, ta có:
IF2 = IE2 + EF2
IF2 = 52 + 122
IF2 = 25 + 144
IF2 = 169
IF = 13
Vậy độ dài IF là 13cm.

14 tháng 2 2016

Vẽ tam giác ta có hình...

10 tháng 5 2018

Áp dụng định lí py - ta - go , ta có :

     EF2 = ED2+DF2 = 12+ 52

                              = 144 + 25 = 169

EF= √169 = 13 ( cm )

10 tháng 5 2018

Xét tam giác DEF vuông tại D

Có: \(DE^2+DF^2=EF^2\left(pitago\right)\)

Thay số\(12^2+5^2=EF^2\)

144+25=EF^2

EF^2=169

EF^2=13^2

=>EF=13

Chúc bn hok tốt

28 tháng 2 2020

Hình bạn tự vẽ nha!

+ Xét \(\Delta DEF\) vuông tại \(F\left(gt\right)\) có:

\(DF^2+EF^2=DE^2\) (định lí Py - ta - go).

=> \(DF^2+12^2=15^2\)

=> \(DF^2=15^2-12^2\)

=> \(DF^2=225-144\)

=> \(DF^2=81\)

=> \(DF=9\left(cm\right)\) (vì \(DF>0\)).

Vậy \(DF=9\left(cm\right).\)

Chúc bạn học tốt!

Áp dụng định lí pytago vào \(\Delta\)DEF vuông tại F, ta được

\(EF^2+DF^2=DE^2\)

hay \(DF^2=DE^2-EF^2=15^2-12^2=81\)

\(\Rightarrow DF=\sqrt{81}=9cm\)

Vậy: DF=9cm

30 tháng 4 2020

a) Ta có : \(15^2=9^2+12^2\)

                \(225=81+144\)

\(\Rightarrow DF^2=DE^2+EF^2\)

\(\Rightarrow\Delta DEF\)là tam giác vuông tại E ( ĐL Py - ta - go đảo )

b) Ta có : \(\widehat{DEF}+\widehat{IEF}=180^o\)( kề bù )

                \(90^o+\widehat{IEF}=180^o\)

                               \(\widehat{IEF}=180^o-90^o\)

                               \(\widehat{IEF}=90^o\)

\(\Rightarrow\Delta IEF\)là tam vuông tại E

Xét \(\Delta IEF\)vuông tại E có :

\(IF^2=IE^2+EF^2\)( ĐL Py - ta - go )

\(IF^2=5^2+12^2\)

\(IF^2=25+144\)

\(IF^2=169\)

\(\Rightarrow IF=\sqrt{169}=13\)

Vậy \(IF=13cm\)

9 tháng 3 2019

Ta có EF2=202=400

DE2+DF2=122+162=400

\(\Rightarrow\)EF2=DE2+DF2

Vậy tam giác DEF là tam giác vuông ( áp dụng định lí Py-ta-go đảo)

^-^ Học tốt nha^-^