Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự kẻ
tứ giác ADBH có:
D vuông (gt)
Góc HAD vuông ( AH vuông DE )
Góc HBD vuông ( BH vuông DF )
=> tứ giác ADBH là HCN
=> AB=DH; I là trung điểm của AB và DH ( tính chất hcn )
Ta có:
AB=DH (cmt)
I là trung điểm của AB và DH (cmt)
=> IH = IB
Tam giác HIB có:
IH = IB (cmt)
=> tam giác HIB cân tại I
=> góc IHB = góc IBH (2 góc đáy trong tam giác cân )
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK