Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔABC đồng dạng với ΔDEF
=>AB/DE=BC/EF=AC/DF
=>7/EF=5/DF=3/6=1/2
=>EF=14cm; DF=10cm
ΔABC đồng dạng với ΔDEF
=>AB/DE=BC/EF=AC/DF
=>7/EF=5/DF=3/6=1/2
=>EF=14cm; DF=10cm
Giải
Vì\(\Delta ABC~\Delta DEF\) nên ta có:
\(\widehat{D}=\widehat{A}=45^o\)
\(\widehat{E}=\widehat{B}=55^o\)
\(\widehat{F}=\widehat{C}=\left(180^o-45^o-55^o\right)=80^o\)
Xét\(\Delta ABC~\Delta DEF\) có:
\(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}=\frac{2}{3}\)
\(\Rightarrow DE=\frac{AB.3}{2}=7,5\)
\(DF=\frac{AC.3}{2}=10,5\)
#hoktot<3#
bài1
a) EF=??
b) không đồng dạng
c) không đồng dạng
d) Đồng dạng (vì sao thì bạn nhắn cho mình nha)
các cặp góc bằng nhau ABC=DEF; BCA=EFD; CAB=FDE
bài 2
a) theo tính chất đường trung bình trong mỗi tam giác (không hiểu thì nhắn cho mình)
ta có MN=1/2AB => MN/AB=1/2 (1)
NM=1/2BC => NP/BC=1/2 (2)
MP=1/2AC => MP/AC=1/2 (3)
từ (1),(2),(3) => MNP đồng dạng với ABC
b) vì MNP đồng dạng với ABC với tỉ số k là 2 ( theo câu a)
nên chu vi ABC = 2 lần chu vi MNP =40cm
Anh mình nghĩ là như thế này. Mà ko biết đúng hay sai .
Ta có : \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)
Suy ra : \(\frac{4,5}{3}=\frac{B'C'}{5}=\frac{C'A'}{7}\)
\(\Rightarrow B'C'=\frac{5.4,5}{3}=7,5\)
\(C'A'=\frac{7.4,5}{3}=10,5\)
Chu vi tam giác A'B'C' là :
4,5 + 7,5 + 10,5 = 22,5 cm
Đ/s : 22,5 cm
a, 2 tam giác đồng dạng
CM:
xét tam giác ta có: \(2x+3x+4x=56\)(\(x\)là hệ số sao cho \(2x;3x;4x\)là ba cạnh của tam giác ABC)
=) \(x=6\)
tỉ lệ cạnh thì cậu chứng minh đc 2 tam giác đồng dạng nhé
b,vì hai tam đồng dạng nên
\(\widehat{ABC}=\widehat{DEF}=45^O\)
\(\widehat{BAC}=\widehat{EDF}=105^O\)
tổng 3 góc trong tam giác =180o
thì tính đc \(\widehat{ACB}=\widehat{DFE}=30^O\)
sao khi ra x=6 nhân vào 2x=2.6=12=AB
3x=3.6=18=AC
BC=4x=4.6=24
tỉ lệ cạnh \(\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}\)
hay \(\frac{12}{3}=\frac{18}{4,5}=\frac{24}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AB}{3}=\dfrac{AC}{5}=\dfrac{BC}{7}=\dfrac{AB+BC+CA}{3+5+7}=\dfrac{20}{15}=\dfrac{4}{3}\)
Do đó: AB=4(cm); AC=20/3(cm); BC=28/3(cm)
ta có:\(\dfrac{DE}{AB}=\dfrac{DF}{AC}=\dfrac{EF}{BC}\)
\(\Leftrightarrow\dfrac{3}{AB}=\dfrac{5}{AC}=\dfrac{7}{BC}\)
áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{3+5+7}{AB+AC+BC}=\dfrac{15}{20}=\dfrac{3}{4}\)
<=>\(\dfrac{AB+AC+BC}{DE+EF+DF}=\dfrac{4}{3}\)
<=>AB=\(\dfrac{4}{3}.DE=\dfrac{4}{3}.3=4\)
AC=\(\dfrac{4}{3}.DF=\dfrac{4}{3}.5=\dfrac{20}{3}\)
BC=\(\dfrac{4}{3}.EF=\dfrac{4}{3}.7=\dfrac{28}{3}\)
VẬY...