Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Số đo góc ngoài tại đỉnh C là \(74^0+47^0=121^0\)
Câu 2:
Đặt \(\widehat{D}=a;\widehat{E}=b\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a-b=52\\a+b=140\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=96\\b=44\end{matrix}\right.\)
Bài 3:
Theo đề, ta có: x+2x+3x=180
=>6x=180
=>x=30
=>\(\widehat{A}=30^0;\widehat{B}=60^0;\widehat{C}=90^0\)
Xét ΔDEF có
\(\widehat{D}+\widehat{E}+\widehat{F}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{E}+\widehat{F}=150^0\)
\(\Leftrightarrow\dfrac{1}{2}\cdot\widehat{F}+\widehat{F}=150^0\)
\(\Leftrightarrow\dfrac{3}{2}\cdot\widehat{F}=150^0\)
hay \(\widehat{F}=100^0\)
Vì \(\widehat{E}+\widehat{F}=150^0\)
nên \(\widehat{E}+100^0=150^0\)
hay \(\widehat{E}=50^0\)
Vậy: \(\widehat{F}=100^0\); \(\widehat{E}=50^0\)
Xét tam giác DEF có
\(\widehat{D}+\widehat{E}+\widehat{F}=180^o\\ \Rightarrow\widehat{D}=180^o-\left(\widehat{E}+\widehat{F}\right)\\ =180^o-120^o=60^o\)
Mà
\(\widehat{E}=\widehat{F}=60^o\\ \Rightarrow\Delta DEF.cân\)
a: \(\widehat{E}=35^0\)
Xét ΔDEF có \(\widehat{E}< \widehat{F}< \widehat{D}\)
nên FD<DE<EF
b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có
EH chung
\(\widehat{DEH}=\widehat{KEH}\)
Do đó: ΔEDH=ΔEKH
Suy ra: HD=HK
hay ΔHDK cân tại H
a: ˆE=350E^=350
Xét ΔDEF có ˆE<ˆF<ˆDE^<F^<D^
nên FD<DE<EF
b: Xét ΔEDH vuông tại D và ΔEKH vuông tại K có
EH chung
ˆDEH=ˆKEHDEH^=KEH^
Do đó: ΔEDH=ΔEKH
Suy ra: HD=HK
A:B=5:6
=>D:E=5:6
Góc ngoài tại đỉnh C có số đo là 88 độ nên A+B=88 độ
hay D+E=88 độ
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{d}{5}=\dfrac{e}{6}=\dfrac{d+e}{5+6}=\dfrac{88}{11}=8\)
Do đó: \(\widehat{E}=48^0\)
\(\widehat{D}=180^0-\widehat{E}-\widehat{F}=50^0=\widehat{A}\\ \left\{{}\begin{matrix}AB=DE\\\widehat{A}=\widehat{D}\\AC=DE\end{matrix}\right.\Rightarrow\Delta ABC=\Delta DEF\left(c.g.c\right)\)
Xét t/giác DEF có \(\widehat{D}+\widehat{E}+\widehat{F}=180^0\) (tổng 3 góc của 1 t/giác)
=> \(\widehat{D}=180^0-\widehat{E}-\widehat{F}=180^0-70^0-60^0=50^0\)
Xét t/giác ABC và t/giác DEF
có: AB = DE (gt)
AC = DF (gt)
\(\widehat{A}=\widehat{D}=50^0\)
=> t/giác ABC = t/giác DEF (c.g.c)
d=30 độ ;f=80độ ; DEF=70 độ ;góc ngoài đỉnh E = 110 độ