K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc MDH=90 độ-góc DMH

=90 độ-2*góc MDF

=90 độ-2*góc E

=góc F+góc E-2*góc E

=góc F-gócE

b: (EF+DH)^2-(DF+DE)^2

=EF^2+2*EF*DH+DH^2-DF^2-DE^2-2*DF*DE

=DH^2>0

=>EF+DH>DF+DE
=>EF-DE>DF-DH

8 tháng 4 2021

A) XÉT ΔDHE VÀ ΔDHF, CÓ

DE=DF (ΔDEF CÂN TẠI D)

\(\widehat{E}=\widehat{F}\) (ΔDEF CÂN TẠI D)

⇒ ΔDHE = ΔDHF (C.HUYỀN-G.NHỌN)

\(\widehat{EDH}=\widehat{FDH}\) (2 GÓC T.ỨNG)

 

 

8 tháng 4 2021

TA CÓ : EN=\(\dfrac{1}{2}\)DE 

MÀ : DE=DF

⇒EN=FM                                                                  B) XÉT ΔNEF VÀ ΔMFE CÓ

EF: CHUNG

\(\widehat{E}=\widehat{F}\)( TAM GIÁC DEF CÂN TẠI D)

EN=FM (CMT)

⇒ΔNEF = ΔMFE (C-G-C)

⇒EM=FN (2 CẠNH TƯƠNG ỨNG)

C) TA CÓ : EH=FH (ΔDHE=ΔDHF)

MÀ : EF=8

⇒DH LÀ TRUNG ĐIỂM CỦA EF

⇒EH=\(\dfrac{1}{2}EF\) = \(\dfrac{1}{2}\) .8 = 4

⇒EH=4 

TRONG ΔDHE VUÔNG TẠI H

\(DE^2=HE^2+DH^2\) (ĐỊNH LÝ PTG)

\(5^2=4^2+DH^2\)

\(DH^2\)=25-16

\(DH^2\) = 9

⇒DH=\(\sqrt{9}\)=3

 

a: Ta có: ΔDEF cân tại D

mà DH là đường cao

nên H là trung điểm của FE

hay HF=HE

b: EF=6cm nên HF=3cm

=>DH=4cm

c: Xét ΔDME và ΔDNF có 

DM=DN

\(\widehat{EMD}\) chung

DE=DF

Do đó: ΔDME=ΔDNF

a) Ta có: \(DN=\dfrac{DE}{2}\)(N là trung điểm của DE)

\(DM=\dfrac{DF}{2}\)(M là trung điểm của DF)

mà DE=DF(ΔDEF cân tại D)

nên DN=DM

Xét ΔDNH vuông tại H và ΔDMH vuông tại M có 

DN=DM(cmt)

DH chung

Do đó: ΔDNH=ΔDMH(Cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{NDH}=\widehat{MDH}\)(hai góc tương ứng)

hay \(\widehat{EDH}=\widehat{FDH}\)

Xét ΔEDH và ΔFDH có 

DE=DF(ΔDEF cân tại D)

\(\widehat{EDH}=\widehat{FDH}\)(cmt)

DH chung

Do đó: ΔEDH=ΔFDH(c-g-c)

Suy ra: HE=HF(Hai cạnh tương ứng)

a: Ta có: ΔDEF cân tại D

mà DH là đường cao

nên H là trung điểm của EF

hay EH=FH

b: EH=FH=EF/2=3(cm)

Xét ΔDHE vuông tại H có \(DE^2=DH^2+HE^2\)

nên DH=4(cm)

c: Xét ΔDEM và ΔDFN có

DE=DF

\(\widehat{EDM}\) chung

DM=DN

Do đó: ΔDEM=ΔDFN

Suy ra: \(\widehat{DEM}=\widehat{DFN}\)

d: Xét ΔNEH và ΔMFH có 

NE=MF

\(\widehat{E}=\widehat{F}\)

EH=FH

Do đó: ΔNEH=ΔMFH

Suy ra: HN=HM

hay H nằm trên đường trung trực của MN(1)

Ta có: KM=KN

nên K nằm trên đường trung trực của MN(2)

Ta có: DN=DM

nên D nằm trên đường trung trực của MN(3)

Từ (1), (2) và (3) suy ra D,H,K thẳng hàng

14 tháng 2 2022

a. xét tam giác DHE và tam giác DHF, có:

D: góc chung

DE = DF ( DEF cân )

DH: cạnh chung

Vậy tam giác DHE = tam giác DHF ( c.g.c )

=> HE = HF ( 2 cạnh tương ứng )

b.ta có: EH = EF :2 ( EF là đường cao cũng là trung tuyến ) = 6 : 2 =3 cm

áp dụng định lý pitago vào tam giác vuông DHE, có:

\(DE^2=DH^2+EH^2\)

\(\Rightarrow DH=\sqrt{DE^2-EH^2}=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)

c.xét tam giác DEM và tam giác DFN có:

DE = DF ( DEF cân )

DM = DN ( gt )

D: góc chung

Vậy tam giác DEM = tam giác DFN ( c.g.c )

=> góc DEM = góc DFN ( 2 góc tương ứng )

d.xét tam giác DKM và tam giác DKN, có:

DM = DN ( gt )

D: góc chung

DK: cạnh chung

Vậy tam giác DKM = tam giác DKN ( c.g.c )

=> góc DKM = góc DKN = 90 độ ( tam giác BNM cân, K là trung điểm cũng là đường cao )

=> DK vuông BC

Mà DH cũng vuông BC

=> D,H,K thẳng hàng

Chúc bạn học tốt!!!