Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc MDH=90 độ-góc DMH
=90 độ-2*góc MDF
=90 độ-2*góc E
=góc F+góc E-2*góc E
=góc F-gócE
b: (EF+DH)^2-(DF+DE)^2
=EF^2+2*EF*DH+DH^2-DF^2-DE^2-2*DF*DE
=DH^2>0
=>EF+DH>DF+DE
=>EF-DE>DF-DH
A) XÉT ΔDHE VÀ ΔDHF, CÓ
DE=DF (ΔDEF CÂN TẠI D)
\(\widehat{E}=\widehat{F}\) (ΔDEF CÂN TẠI D)
⇒ ΔDHE = ΔDHF (C.HUYỀN-G.NHỌN)
⇒\(\widehat{EDH}=\widehat{FDH}\) (2 GÓC T.ỨNG)
TA CÓ : EN=\(\dfrac{1}{2}\)DE
MÀ : DE=DF
⇒EN=FM B) XÉT ΔNEF VÀ ΔMFE CÓ
EF: CHUNG
\(\widehat{E}=\widehat{F}\)( TAM GIÁC DEF CÂN TẠI D)
EN=FM (CMT)
⇒ΔNEF = ΔMFE (C-G-C)
⇒EM=FN (2 CẠNH TƯƠNG ỨNG)
C) TA CÓ : EH=FH (ΔDHE=ΔDHF)
MÀ : EF=8
⇒DH LÀ TRUNG ĐIỂM CỦA EF
⇒EH=\(\dfrac{1}{2}EF\) = \(\dfrac{1}{2}\) .8 = 4
⇒EH=4
TRONG ΔDHE VUÔNG TẠI H
\(DE^2=HE^2+DH^2\) (ĐỊNH LÝ PTG)
⇒\(5^2=4^2+DH^2\)
⇒\(DH^2\)=25-16
⇒\(DH^2\) = 9
⇒DH=\(\sqrt{9}\)=3
a: Ta có: ΔDEF cân tại D
mà DH là đường cao
nên H là trung điểm của FE
hay HF=HE
b: EF=6cm nên HF=3cm
=>DH=4cm
c: Xét ΔDME và ΔDNF có
DM=DN
\(\widehat{EMD}\) chung
DE=DF
Do đó: ΔDME=ΔDNF
a) Ta có: \(DN=\dfrac{DE}{2}\)(N là trung điểm của DE)
\(DM=\dfrac{DF}{2}\)(M là trung điểm của DF)
mà DE=DF(ΔDEF cân tại D)
nên DN=DM
Xét ΔDNH vuông tại H và ΔDMH vuông tại M có
DN=DM(cmt)
DH chung
Do đó: ΔDNH=ΔDMH(Cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{NDH}=\widehat{MDH}\)(hai góc tương ứng)
hay \(\widehat{EDH}=\widehat{FDH}\)
Xét ΔEDH và ΔFDH có
DE=DF(ΔDEF cân tại D)
\(\widehat{EDH}=\widehat{FDH}\)(cmt)
DH chung
Do đó: ΔEDH=ΔFDH(c-g-c)
Suy ra: HE=HF(Hai cạnh tương ứng)
a: Ta có: ΔDEF cân tại D
mà DH là đường cao
nên H là trung điểm của EF
hay EH=FH
b: EH=FH=EF/2=3(cm)
Xét ΔDHE vuông tại H có \(DE^2=DH^2+HE^2\)
nên DH=4(cm)
c: Xét ΔDEM và ΔDFN có
DE=DF
\(\widehat{EDM}\) chung
DM=DN
Do đó: ΔDEM=ΔDFN
Suy ra: \(\widehat{DEM}=\widehat{DFN}\)
d: Xét ΔNEH và ΔMFH có
NE=MF
\(\widehat{E}=\widehat{F}\)
EH=FH
Do đó: ΔNEH=ΔMFH
Suy ra: HN=HM
hay H nằm trên đường trung trực của MN(1)
Ta có: KM=KN
nên K nằm trên đường trung trực của MN(2)
Ta có: DN=DM
nên D nằm trên đường trung trực của MN(3)
Từ (1), (2) và (3) suy ra D,H,K thẳng hàng
a. xét tam giác DHE và tam giác DHF, có:
D: góc chung
DE = DF ( DEF cân )
DH: cạnh chung
Vậy tam giác DHE = tam giác DHF ( c.g.c )
=> HE = HF ( 2 cạnh tương ứng )
b.ta có: EH = EF :2 ( EF là đường cao cũng là trung tuyến ) = 6 : 2 =3 cm
áp dụng định lý pitago vào tam giác vuông DHE, có:
\(DE^2=DH^2+EH^2\)
\(\Rightarrow DH=\sqrt{DE^2-EH^2}=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)
c.xét tam giác DEM và tam giác DFN có:
DE = DF ( DEF cân )
DM = DN ( gt )
D: góc chung
Vậy tam giác DEM = tam giác DFN ( c.g.c )
=> góc DEM = góc DFN ( 2 góc tương ứng )
d.xét tam giác DKM và tam giác DKN, có:
DM = DN ( gt )
D: góc chung
DK: cạnh chung
Vậy tam giác DKM = tam giác DKN ( c.g.c )
=> góc DKM = góc DKN = 90 độ ( tam giác BNM cân, K là trung điểm cũng là đường cao )
=> DK vuông BC
Mà DH cũng vuông BC
=> D,H,K thẳng hàng
Chúc bạn học tốt!!!