Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔEDI và ΔFDI có
DE=DF
\(\widehat{EDI}=\widehat{FDI}\)
DI chung
Do đó: ΔEDI=ΔFDI
a/ Xét tam giác DKE và tam giác DKF
DE = DF (gt)
EK = FK (gt)
DK là cạnh chung
=> tam giác DKE = tam giác DKF (c.c.c)
b/ Nhớ sửa lại đề nha, phải là góc EDF
Ta có:
DE = DF (gt)
EK = FK (gt)
=> DK là tia phân giác góc EDF
c/ Ta có: DK là tia phân giác góc EDF (cmt)
EK = FK (gt)
=> DK vuông góc với EF
^-^ chúc bạn học tốt
\(a,\left\{{}\begin{matrix}DE=DF\\\widehat{EDI}=\widehat{FDI}\\DI\text{ chung}\end{matrix}\right.\Rightarrow\Delta DEI=\Delta DFI\left(c.g.c\right)\\ \Rightarrow\widehat{DIE}=\widehat{DIF};EI=FI\\ \text{Mà }\widehat{DIE}+\widehat{DIF}=180^0\\ \Rightarrow\widehat{DIE}=\widehat{DIF}=90^0\\ \Rightarrow DI\perp EF\text{ và }I\text{ là trung điểm }EF\\ b,\left\{{}\begin{matrix}DE=DF\\\widehat{EDM}=\widehat{FDM}\\DM\text{ chung}\end{matrix}\right.\Rightarrow\Delta DEM=\Delta DFM\left(c.g.c\right)\\ \Rightarrow ME=MF;\widehat{DEM}=\widehat{DFM}=90^0\\ \Rightarrow\Delta AFM\text{ vuông tại }F\)
a: ED<EF
=>HD<HF
b: Xét ΔDEI có DE=DI và góc D=60 độ
nên ΔDEI đều
c: Xét tứ giác FEBD có
A là trung điểm chung của FB và ED
=>FEBD là hbh
=>FE//BD
=>BD vuông góc DE
a: Ta có: ΔDEF cân tại D
mà DI là đường trung tuyến
nên DI là phân giác
b: Xét ΔDMI vuông tại M và ΔDNI vuông tại N có
DI chung
\(\widehat{MDI}=\widehat{NDI}\)
DO đó; ΔDMI=ΔDNI
Suy ra: IM=IN
hay ΔIMN cân tại I