K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDHE và ΔDHF có

DH chung

HE=HF

DE=DF

Do đó: ΔDHE=ΔDHF

b: Xét ΔDMH vuông tại M và ΔDNH vuông tại N có

DH chung

\(\widehat{MDH}=\widehat{NDH}\)

Do đó: ΔDMH=ΔDNH

Suy ra: DM=DN

10 tháng 1 2022

a, Xét ΔDHE và ΔDHF có:

    DE = DF

    DH ( cạnh chung )

    HE = HF ( vì H là trung điểm của EF )

⇒ ΔDHE = ΔDHF ( C.C.C )

b, Xét ΔDMH vuông tại M và ΔDNH vuông tại N có :

DH (cạnh chung )

MDH = NDH

⇒ ΔDMH=ΔDNH

⇒ DM=DN

\(\text{#TNam}\)

`a,` Xét Tam giác `HED` và Tam giác `HFD` có

`DE = DF (\text {Tam giác DEF cân tại D})`

\(\widehat{E}=\widehat{F}\) `(\text {Tam giác DEF cân tại D})`

`=> \text {Tam giác HED = Tam giác HDF (ch-gn)}`

`b,` Vì Tam giác `HED =` Tam giác `HFD (a)`

`-> HE = HF (\text {2 cạnh tương ứng})`

Xét Tam giác `HEM` và Tam giác `HFN` có:

`HE = HF (CMT)`

\(\widehat{E}=\widehat{F}\) `(a)`

\(\widehat{EMH}=\widehat{FNH}=90^0\)

`=> \text {Tam giác HEM = Tam giác HFN (ch-gn)}`

`-> EM = FN (\text {2 cạnh tương ứng})`

Ta có: \(\left\{{}\begin{matrix}DE=MD+ME\\DF=ND+NF\end{matrix}\right.\)

Mà `DE = DF, ME = NF`

`-> MD = ND`

Xét Tam giác `DMN: DM = DN (CMT)`

`-> \text {Tam giác DMN cân tại D}`

`->`\(\widehat{DMN}=\widehat{DNM}=\)\(\dfrac{180-\widehat{A}}{2}\)

Tam giác `DEF` cân tại `D`

`->`\(\widehat{E}=\widehat{F}=\)\(\dfrac{180-\widehat{A}}{2}\)

`->`\(\widehat{DMN}=\widehat{E}\)

Mà `2` góc này nằm ở vị trí đồng vị

`-> \text {MN // EF (t/c 2 đt' //)}`

loading...

 

28 tháng 3 2020

D E F M N H

lưu ý hình ảnh chỉ mang t/c minh họa  ; vui lòng k vẽ theo

xét \(\Delta DHM\)VÀ \(\Delta DHN\)

DH-CẠNH CHUNG

\(\widehat{HDM}=\widehat{HDN}\left(gt\right)\)

\(\widehat{DMH}=\widehat{DNH}=90^o\left(gt\right)\)

=> \(\Delta DHM=\Delta DHN\)

=>HM = HN.

b) xét tam giác DEF cân tại D

=> \(\widehat{DEF}=\widehat{DFE}\)(T/C TAM GIÁC CÂN )

=>\(\widehat{MEH}=\widehat{NFH}\)

XÉT \(\Delta MEH\)VÀ \(\Delta NFH\)

\(\widehat{EMH}=\widehat{FNH}=90^o\left(gt\right)\)

\(\widehat{MEH}=\widehat{NFH}\left(cmt\right)\)

\(HM=HN\left(cmt\right)\)

=> \(\Delta MEH=\Delta NFH\)

D E F M N H

a) Xét 2 tam giác vuông: \(\Delta MDH\)và \(\Delta NDH\)có:

\(\widehat{MDH}=\widehat{NDH}\left(gt\right)\)

\(HD\)cạnh chung

\(\Rightarrow\Delta MDH=\Delta NDH\left(ch-gn\right)\)

\(\Rightarrow HM=HN\)( 2 cạnh tương ứng)

b) Ta có: \(DE=DF\)( vì  tam giác DEF cân tại D )

Hay \(DM+ME=DN+NF\)

mà \(DM=DN\)( 2 cạnh tương ưng của tam giác MDH và tam giác NDH )

\(\Rightarrow ME=NF\)

Xét \(\Delta HME\)và \(\Delta HNF\)có:

\(\widehat{HME}=\widehat{HNF}\left(=90^o\right)\)

\(ME=NF\left(cmt\right)\)

\(\widehat{MEH}=\widehat{NFH}\) ( vì tam giác DEF cân tại D)

\(\Rightarrow\Delta HME=\Delta HNF\left(g-c-g\right)\)

hok tốt!!

5 tháng 9 2017

a) Xét ΔDEH vuông tại H và ΔDFH vuông tại H có 

DE=DF(ΔDEF cân tại D)

DH chung

Do đó: ΔDEH=ΔDFH(cạnh huyền-cạnh góc vuông)

Suy ra: HE=HF(hai cạnh tương ứng) và \(\widehat{EDH}=\widehat{FDH}\)(hai góc tương ứng)