K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2018

D E F N M I

a)   XÉT \(\Delta DEM\)VÀ \(\Delta DEN\)

       ^D CHUNG 

         DM=DN                        \(\Rightarrow\Delta DEM=\Delta DEN\left(C-G-C\right)\)=>  ^DEM=^DEN

         DF=DE

b)   VÌ ^DEF=^DFE MÀ ^DEM=^DEN =>^IEF=^IFE  \(\Rightarrow\Delta IEF\)CÂN

c)    TA CÓ \(\Delta DNM\)CÂN TẠI D NÊN ^DMN=^DNM=\(\frac{180^0-D}{2}\)(1)

      TA  LẠI CÓ \(\Delta DÈF\)CÂN TẠI D NÊN ^DEF=^DFE=\(\frac{180^0-D}{2}\)(2)

     TỪ (1) VÀ (2) => ^DMN=^DFE 

     MÀ 2 GÓC NÀY Ở VỊ TRÍ ĐỒNG VỊ NÊN NM // EF

3 tháng 5 2016

D E F

a/ Vì EF2=DE2+DF2 (Pytago)

=> Tam giác DEF vuông tại D

3 tháng 3 2018

câu này mình vừa làm ở bạn Khang Phạm Duy , HÂN nhé

tham khảo .mình giải rất chi tiết 

3 tháng 3 2018

D E F N M I

a) Xét \(\Delta DEM\)và \(\Delta DFN\)

\(\widehat{D}\)chung

DM=DN

DF=DE

\(\Rightarrow\Delta DEM=\Delta DFN\left(c.g.c\right)\)

\(\Rightarrow\widehat{DEM}=\widehat{DFN}\)(2 góc tương ứng)

b,c dễ bn tự làm

21 tháng 3 2022

a, Ta có: DH là đường cao trong tam giác cân DEF

⇒DH vừa là đường cao, vừa là đường trung tuyến trong tam giác cân DEF

⇒HE=HF 

Ta có: HE=HF=EF/2=8/2=4 (cm)

Xét ΔDHE vuông tại H

Theo định lý Pi-ta-go, ta có:

DF²=DH²+HF²

⇒DH²=DF²-HF²

⇒DH²=5²-4²

⇒DH²=9

⇒DH=√9=3 (cm)

b, Xét ΔDME và ΔDNF có:

DM=DN (GT)

A là góc chung

DE=DF (GT)

⇒ ΔDME=ΔDNF (c.g.c)

⇒EM=FN (2 cạnh tương ứng)

    DEM=DFN (2 góc tương ứng)

c, Ta có: E=F (GT)

và DEM=DFN (cmt)

⇒KEF=KFE 

⇒ΔKEF cân tại K

⇒KE=KF

d, Ta có: DH⊥EF và HE=HF

⇒DH là đường trung trực của EF

mà KE=KF

⇒K là điểm thuộc đường trung trực DH

⇒D, K, H thẳng hàng

21 tháng 3 2022

cảm ơn bạn

28 tháng 1 2022

a) Xét △ AED có AE=AD nến △AED cân tại A

\(\widehat{AED}=\widehat{ADE}\) ⇒\(\widehat{DEB}=\widehat{EDC}\) 

△ABC cân ⇒AB=AC mà AE=AD⇒EB=DC

Xét △DEB và △EDC có :

\(\widehat{DEB}=\widehat{EDC}\left(cmt\right)\)

ED : cạnh chung

EB=DC \(\left(cmt\right)\) 

Do đó : △DEB = △EDC \(\left(c.g.c\right)\) 

Nên \(\widehat{EBD}=\widehat{DCE}\) hay \(\widehat{ABD}=\widehat{ACE}\) 

b) △ABC cân ⇒\(\widehat{ABC}=\widehat{ACB}\) mà \(\widehat{ABD}=\widehat{ACE}\) (câu a) ⇒\(\widehat{IBC}=\widehat{ICB}\) 

Vậy △IBC cân tại I

c) Xét △AIB và △AIC có :

AB=AC(gt)

\(\widehat{ABD}=\widehat{ACE}\) (câu a)

BI=CI(vì △IBC cân tại I)

Do đó :△AIB=△AIC\(\left(c.g.c\right)\) 

\(\widehat{BAI}=\widehat{CAI}\) ⇒ AI là tia phân giác \(\widehat{BAC}\) 

d) Xét △AED và △ABC có :

A : chung 

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\) 

Nên △AED đồng dạng △ABC \(\left(c.g.c\right)\) 

\(\widehat{AED}=\widehat{ABC}\) ⇒ ED//BC

Vì AI là đường phân giác của △AED mà △AED cân nên AI cũng là đường cao ⇒AI⊥ED lại có : ED//BC ⇒AI⊥BC

e) AI⊥BC (AI là đường cao tam giác ABC) mà △ABC cân nên AI cũng là đường trung tuyến ⇒ AI là đường trung trực của BC

 

 

28 tháng 1 2022

a, Xét tam giác ABD và tam giác ACE ta có : 

^A _ chung 

^AB = AC ( gt ) 

AD = AE ( gt )

Vậy tam giác ABD = tam giác ACE ( g.c.g )

b, => ^ABD = ^ACE ( 2 góc tương ứng ) 

mà tam giác ABC cân tại => ^B = ^C 

=> ^B - ^ABD = ^DBC 

=> ^C - ^ACE = ^ECB 

=> ^DBC = ^ECB 

Xét tam giác IBC có : ^DBC = ^ECB 

nên IBC là tam giác cân tại I

c, Xét tam giác ABI và tam giác ACI ta có : 

^ABI = ^ACI ( cmt )

AB = AC ( gt) 

IA _ chung 

Vậy tam giác ABI = tam giác ACI ( c.g.c ) 

=> ^BAI = ^CAI ( 2 góc tương ứng )

Vậy AI là phân giác ^BAC 

d, Ta có : \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)=> ED // BC ( Ta lét đảo )

mà AI là phân giác của tam giác ABC cân tại A

=> AI đồng thời là đường cao 

=> AI vuông BC ; ED // BC (cmt)

=> AI vuông ED 

e, Xét tam giác ABC cân tại A

AI là đường cao, phân giác 

đồng thời AI là đường trung trực đoạn BC 

30 tháng 4 2019

a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)

hay\(5^2=3^2+DF^2\)

\(\Rightarrow DF^2=5^2-3^2=25-9=16\)

\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)

Ta có:\(DE=3cm\)

\(DF=4cm\)

\(EF=5cm\)

\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)

b)Xét\(\Delta DEF\)\(\Delta DKF\)có:

\(DE=DK\)(\(D\)là trung điểm của\(EK\))

\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)

\(DF\)là cạnh chung

Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)

\(\Rightarrow EF=KF\)(2 cạnh t/ứ)

Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)

Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)

c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

Ta lại có:​\(DF\)cắt\(KI\)tại\(G\)

mà​\(DF\)​là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)

\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)

\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)

\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))

\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)

Vậy\(GF\approx2,7cm\)

a: Xét ΔDEM vuông tại E và ΔDHM vuông tại H có

DM chung

góc EDM=góc HDM

=>ΔDEM=ΔDHM

b: Xét ΔMEK vuông tại E và ΔMHF vuông tại H có

ME=MH

góc EMK=góc HMF

=>ΔMEK=ΔMHF

=>MK=MF

=>ΔMKF cân tại M

c: KM+ME=EM+MF=EF<KF