K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

b: Xét ΔEBC có góc EBC=góc ECB

nên ΔEBC cân tại E

mà EH là đường cao

nên H là trung điểm của BC

=>HB=HC

d: Xét ΔEAI vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEI=góc HEC

=>ΔEAI=ΔEHC

=>EI=EC>EH

30 tháng 4 2022

loading...

a) Xét \(\Delta ABE\) và \(\Delta HBE\):

BE chung

\(\widehat{ABE}=\widehat{EBH}\)

\(\widehat{EAB}=\widehat{EHB}=90^o\)

\(\Rightarrow\Delta ABE=\Delta HBE\left(ch-gn\right)\)

b) \(\widehat{EBH}=\dfrac{1}{2}\widehat{B}=30^o\)

\(\widehat{ACB}=90^o-\widehat{B}=30^o\)

\(\Rightarrow\Delta EBC\) cân tại E

Mà EH vuông góc BC

\(\Rightarrow HB=HC\)

c) \(\widehat{HEB}=90^o-\widehat{EBH}=60^o\)

\(KH//BE\Rightarrow\widehat{KHE}=\widehat{HEB}=60^o\)

\(\widehat{HEB}+\widehat{AEB}=60^o+60^o=120^o\)

\(\Rightarrow\widehat{KEH}=180^o-120^o=60^o\)

\(\Rightarrow\Delta EHK\)  đều

d) Theo phần a. \(\Delta ABE=\Delta HBE\Rightarrow AE=EH\)

\(\Delta IAE\) vuông ở A \(\Rightarrow IE>AE\)

\(\Rightarrow IE>EH\)

1 tháng 5 2022

a) Xét ΔABEΔABE và ΔHBEΔHBE:

BE chung

ˆABE=ˆEBHABE^=EBH^

ˆEAB=ˆEHB=90oEAB^=EHB^=90o

⇒ΔABE=ΔHBE(ch−gn)⇒ΔABE=ΔHBE(ch−gn)

b) ˆEBH=12ˆB=30oEBH^=12B^=30o

ˆACB=90o−ˆB=30oACB^=90o−B^=30o

⇒ΔEBC⇒ΔEBC cân tại E

Mà EH vuông góc BC

⇒HB=HC⇒HB=HC

c) ˆHEB=90o−ˆEBH=60oHEB^=90o−EBH^=60o

KH//BE⇒ˆKHE=ˆHEB=60oKH//BE⇒KHE^=HEB^=60o

ˆHEB+ˆAEB=60o+60o=120oHEB^+AEB^=60o+60o=120o

⇒ˆKEH=180o−120o=60o⇒KEH^=180o−120o=60o

⇒ΔEHK⇒ΔEHK  đều

d) Theo phần a. ΔABE=ΔHBE⇒AE=EHΔABE=ΔHBE⇒AE=EH

ΔIAEΔIAE vuông ở A ⇒IE>AE

 

 

12 tháng 5 2022

Tham khảo:

undefined

12 tháng 5 2022

refer

undefined

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0

Sửa đề: \(\widehat{A}=60^0\)

a) Xét ΔACE vuông tại C và ΔAKE vuông tại K có 

AE chung

\(\widehat{CAE}=\widehat{KAE}\)(AE là tia phân giác của \(\widehat{CAK}\))

Do đó: ΔACE=ΔAKE(cạnh huyền-góc nhọn)

b) Ta có: ΔABC vuông tại C(gt)

nên \(\widehat{CAB}+\widehat{CBA}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{EBA}+60^0=90^0\)

\(\Leftrightarrow\widehat{EBA}=30^0\)(1)

Ta có: AE là tia phân giác của \(\widehat{CAB}\)(gt)

nên \(\widehat{EAB}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^0}{2}=30^0\)(2)

Từ (1) và (2) suy ra \(\widehat{EBA}=\widehat{EAB}\)

Xét ΔEAB có \(\widehat{EBA}=\widehat{EAB}\)(cmt)

nên ΔEAB cân tại E(Định lí đảo của tam giác cân)