Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt b + c - a = x; c + a - b = y; a + b - c = z. (x, y, z > 0)
Ta có \(A=\dfrac{a}{b+c-a}+\dfrac{4b}{c+a-b}+\dfrac{9c}{a+b-c}=\dfrac{y+z}{2x}+\dfrac{2\left(z+x\right)}{y}+\dfrac{9\left(x+y\right)}{2z}=\left(\dfrac{y}{2x}+\dfrac{2x}{y}\right)+\left(\dfrac{z}{2x}+\dfrac{9x}{2z}\right)+\left(\dfrac{9y}{2z}+\dfrac{2z}{y}\right)\ge2\sqrt{\dfrac{y}{2x}.\dfrac{2x}{y}}+2\sqrt{\dfrac{z}{2x}.\dfrac{9x}{2z}}+2\sqrt{\dfrac{9y}{2z}.\dfrac{2z}{y}}=2+3+6=11\).
Dấu "=" xảy ra khi và chỉ khi \(3y=2z=6x\Leftrightarrow3\left(c+a-b\right)=2\left(b+c-a\right)=6\left(a+b-c\right)\)
\(\Leftrightarrow a=\dfrac{5}{6};b=\dfrac{2}{3};c=\dfrac{1}{2}\).
Ta có:
\(\left(p-a\right)\left(p-b\right)\le\dfrac{\left(p-a+p-b\right)^2}{4}=\dfrac{c^2}{4}\)
Tương tự ta có: \(\left\{{}\begin{matrix}\left(p-b\right)\left(p-c\right)\le\dfrac{a^2}{4}\\\left(p-c\right)\left(p-a\right)\le\dfrac{b^2}{4}\end{matrix}\right.\)
Nhân 3 cái vế theo vế được
\(\left[\left(p-a\right)\left(p-b\right)\left(p-c\right)\right]^2\le\dfrac{\left(abc\right)^2}{8^2}\)
\(\Rightarrow\left(p-a\right)\left(p-b\right)\left(p-c\right)\le\dfrac{abc}{8}\)
Thế vô bài toán ta được:
\(N=\dfrac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{abc}\le\dfrac{\dfrac{abc}{8}}{abc}=\dfrac{1}{8}\)
Bài2 ,
Ta có\(sin_P^2+cos_P^2=1\)
mà \(2\left(sin_P^2+cos_P^2\right)\ge\left(sin_P+cos_p\right)^2\Rightarrow\left(sin_p+cos_p\right)\le\sqrt{2}\)
^_^
tui nghĩ là tính 8N rồi thay p tìn max 8N
lm như tui bảo nha,,, thay 2p vào
ta có \(\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\le\frac{a+b-c+a+c-b}{2}=a\)
lm tt rồi nhân 3 vế vào ta đc 8N <= 1
=> ........