K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác CAHB có góc CAH=góc CBH=góc ACB=90 độ

nen CAHB là hình chữ nhật

SUy ra: AB=CH=9cm

\(HE=\dfrac{9^2}{4}=\dfrac{81}{4}=20.25\left(cm\right)\)

b: Xét ΔCHD vuông tại H có HA là đường cao

nên \(CA\cdot CD=CH^2\left(1\right)\)

Xét ΔCHE vuông tại H có HB là đường cao

nên \(CB\cdot CE=CH^2\left(2\right)\)

TỪ (1) và (2) suy ra \(CA\cdot CD=CB\cdot CE\)

15 tháng 10 2020
Mọi người giúp mk với ạ!Mk sắp kiểm tra rồi😭😭
1 tháng 10 2021

...............................................................................

..........................................................................................

...........................................................................tgbvn JGKGITJNNFJFJNFJBFÒNBFOHRJ;FFJh' IIIor   ỉie

16 tháng 10 2021

\(a,EF=\sqrt{DE^2+DF^2}=15\left(cm\right)\left(pytago\right)\\ \Rightarrow\sin\widehat{E}=\dfrac{DF}{EF}=\dfrac{9}{15}=\dfrac{3}{5}\\ \cos\widehat{E}=\dfrac{DE}{EF}=\dfrac{12}{15}=\dfrac{4}{5}\\ \tan\widehat{E}=\dfrac{DF}{DE}=\dfrac{9}{12}=\dfrac{3}{4}\\ \cot\widehat{E}=\dfrac{1}{\tan\widehat{E}}=\dfrac{4}{3}\\ b,Áp.dụng.HTL:DH\cdot EF=DE\cdot DF\\ \Rightarrow DH=\dfrac{12\cdot9}{15}=7,2\left(cm\right)\)

30 tháng 10 2021

c: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

mà AD là tia phân giác

nên AEDF là hình vuông