Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔCHA vuông tạiH có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
c: BK là phân giác
=>AK/CK=BA/BC
ΔAHC có AD là phân giác
nên DH/CD=AH/AC=BA/BC
=>DH/CD=AK/CK
=>KD//AH
a: Xét tứ giác AHCE có
I là trung điểm chung của AC,HE
góc AHC=90 độ
HA=HC
=>AHCE là hình vuông
b: Để AHCE là hình vuông thì ΔABC cần có những điều kiện sau:
AB=AC; góc B=45 độ
Để tìm 3 cặp tam giác đồng dạng với tam giác DEF, ta có thể sử dụng các định lý đồng dạng trong tam giác.
- Tam giác DHE đồng dạng với tam giác DEF Ta có:
- Góc D của tam giác DEF bằng góc D của tam giác DHE (do DH là đường cao của tam giác DEF, nên góc DHS vuông góc với DE)
- Góc E của tam giác DEF bằng góc H của tam giác DHE (do HE là đường cao của tam giác DHE, nên góc HED vuông góc với DE)
- Từ hai quan sát trên, ta suy ra tam giác DHE đồng dạng với tam giác DEF theo định lý góc-góc-góc.
- Tam giác EFD đồng dạng với tam giác DEF Ta có:
- Tam giác EFD cũng là tam giác vuông tại D, nên góc D bằng góc D của tam giác DEF.
- Từ đó, ta có hai góc D giống nhau ở hai tam giác, còn lại là góc E và góc F, ta có:
EF/DF = (DE + DF)/DF = (6+8)/8 = 7/4
ED/DF = DE/DF = 6/8 = 3/4
- Từ hai tỉ lệ này, ta suy ra tam giác EFD đồng dạng với tam giác DEF theo định lý góc - cân - góc.
- Tam giác EHD đồng dạng với tam giác DEF Ta có:
- Góc D của tam giác DEF bằng góc H của tam giác EHD (do DH là đường cao của tam giác DEF, nên góc DHS vuông góc với DE; HE là đường cao của tam giác EHD, nên góc HES vuông góc với ED; do đó ta có góc H bằng góc D)
- Góc E của tam giác DEF bằng góc E của tam giác EHD (do cả hai tam giác đều chứa cạnh ED)
- Từ hai quan sát trên, ta suy ra tam giác EHD đồng dạng với tam giác DEF theo định lý góc-góc-góc.
Vậy ta đã tìm được 3 cặp tam giác đồng dạng với tam giác DEF, đó là: DHE, EFD, EHD.
a) Vì \(\Delta ABC\) cân tại A, có AH là đường cao
\(\Rightarrow AH\) vừa là đường cao, vừa là đường phân giác của \(\Delta ABC\)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}=\dfrac{\widehat{A}}{2}\)
Xét \(\Delta ABH\) và \(\Delta ACH\) có:
\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)
\(\widehat{AHB}=\widehat{AHC}=90^0\)
\(AH\): cạnh chung
\(\Rightarrow\Delta ABH=\Delta ACH\left(ch-gn\right)\)
thật ra chủ yếu là mk muốn tìm lời giải của phần c cơ phần a,b mk lm đc lâu r