Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ.
Xét \(\Delta ABC\)cân tại A ta có:
\(\widehat{DAC}=180^o-2\widehat{ACD}\)
\(\widehat{DAC}=180^o-2\cdot31^o=118^o\)
Mà \(\widehat{DAC}=\widehat{ABD}+\widehat{ADB}\)( góc ngoài tại đỉnh A của \(\Delta ABD\))
Nên \(118^o=88^o+\widehat{ADB}\)
\(\Rightarrow\)\(\widehat{ADB}=118^o-88^o=30^o\)
Mặt khác \(\widehat{ADB}=\widehat{DEC}\)( 2 góc so le trong và BD // EC )
\(\Rightarrow\)\(\widehat{DEC}=30^o\)
Ta có:
\(\widehat{ACE}=\widehat{ABD}\)( 2 góc so le trong và BD // EC )
\(\widehat{ABD}=88^o\left(gt\right)\)
\(\Rightarrow\)\(\widehat{ACE}=88^o\)
Mà \(\widehat{DCE}=\widehat{ACD}+\widehat{ACE}\)
Nên \(\widehat{DCE}=31^o+88^o=119^o\)
Ta có:
\(\widehat{ACD}=\widehat{ADC}\)( \(\Delta ACD\)cân tại A)
\(\widehat{ACD}=31^o\)
\(\Rightarrow\)\(\widehat{ADC}=31^o\)
Xét \(\Delta ECD\)ta có:
\(\widehat{DCE}>\widehat{EDC}>\widehat{DEC}\left(119^o>31^o>30^o\right)\)
\(\Rightarrow\)\(ED>EC>CD\)( Quan hệ cạnh góc đối diện trong tam giác )
Vậy cạnh \(DE\)lớn nhất trong \(\Delta CDE\)
Hướng dẫn thôi nhé ^^ toán hình mà chép lời giải thôi thì mất thú vị ^^
Ý a em tính góc EAC (góc kề bù) , tính góc ACE (so le trong)
Ý b dùng định lý tổng 3 góc của tam giác nhé
Còn ý c dùng định lý 1 về quan hệ giữa góc và cạnh dối diện nhé ^^ có gì k hiểu thì ib hỏi chị
Vì AD //CE
=> CAD = ACE = 50°( so le trong )
Mà CAB + CAE = 180°
=> EAC = 50°
=> EAC = ECA = 50°
=> ∆EAC cân tại E
b) Vì EAC + ECA +AEC = 180°
=> AEC = 80°
c) Vì ∆AEC cân tại E
=> AE = EC
Mà EAC = ECA =50°
=> EAC< AED
=> BC là cạnh lớn nhất