Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo mình nghĩ bài này nhầm đầu bài rồi... Tam giác ABC cân tại A mà góc A bằng 90 độ=> Tam giác ABC là tam giác vuông cân.... Xong đó ta lại kẻ tiếp BD vuông góc với AC Thì BD sẽ Trùng với BA, Tiếp nữa kẻ CE vuông góc vớiAB thì đoạn CE sẽ trùng với đoạn AC
Theo mình nghĩ đầu bài nên để tam giác ABC là tam giác cân thì hợp hơn... Góc A không bằng 90 độ
Nguyễn Diệu Linh.
Cho tam giác ABC cân tại A (góc A < 90 độ). Kẻ BD vuông góc AC (D thuộc AC), CE vuông góc AB (E thuộc AB), BD và CE cắt nhau tại H. a) Chứng minh BD = CE. b) Chứng minh tam giác BHC cân. c) Chứng minh AH là đường trung trực của BC. d) Trên tia BD lấy điểm K sao cho D là trung điểm của BK. So sánh góc ECB và góc DKC - Toán học Lớp 7 - Bài tập Toán học Lớp 7 - Giải bài tập Toán học Lớp 7 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
cho hình chữ nhật ABCD ,đường chéo BD.Từ A ve AH vuong goc BD(H thuocB) a)CM tam giac HAD dong dang tam giac CDB b)CM AH.BD=AD.AB c) cho BH=9cm,HD=16cm.Tinh dien h tam giac ABC.
tự kẻ hình
a) xét tam giác BEC và tam giác CDB có
BC chung
BEC=CDB(=90 độ)
ABC=ACB( tam giác ABC cân A)
=> tam giác BEC= tam giác CDB(ch-gnh)
=> BD=CE( hai cạnh tương ứng)
b) từ tam giác BEC= tam giác CDB=> DBC=ECB(hai góc tương ứng)
=> tam giác HBC cân H
c) đặt O là giao điểm của AH với BC
vì AH,BD,CE cùng giao nhau tại H mà BD, CE là đường cao=> AH là đường cao ( 3 đường cao cùng đi qua một điểm)
vì HBC cân H=> HB=HC
xét tam giác HOB và tam giác HOC có
HB=HC(cmt)
HBO=HCO(cmt)
HOB=HOC(=90 độ)
=> tam giác HOB= tam giác HOC(ch-gnh)
=> BO=CO( hai cạnh tương ứng)
=> AH là trung trực của BC
d) xét tam giác CDB và tam giác CDK có
BD=DK(gt)
CDB=CDK(=90 độ)
DC chung
=> tam giác CDB= tam giác CDK(cgc)
=> CBD=CKD( hai cạnh tương ứng)
mà CBD=BCE=> CKD=BCE
-Lưu ý: Chỉ mang tính chất tóm tắt bài làm, bạn không nên trình bày theo!
-Có: △ABC cân tại A và AH là đường cao (AH⊥BC tại H)
\(\Rightarrow\)AH cũng là đường phân giác \(\Rightarrow2\widehat{HAC}=\widehat{BAC}\)
-Có: \(AB=BK\left(gt\right)\Rightarrow\)ABK cân tại B. \(\Rightarrow\widehat{BAK}=\widehat{AKD}\)
-Có: \(\widehat{DAK}+\widehat{AKD}=90^0\) (△ADK vuông tại D)
\(\Rightarrow\widehat{DAK}+\widehat{BAK}=90^0\)
\(\Rightarrow\widehat{DAK}+\widehat{BAC}+\widehat{DAK}=90^0\)
\(\Rightarrow2\widehat{DAK}+2\widehat{HAC}+=90^0\)
\(\Rightarrow2\left(\widehat{DAK}+\widehat{HAC}\right)=90^0\)
\(\Rightarrow\widehat{HAK}=45^0\)