K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

 a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH 
suy ra AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
suy ra AH=AE (2) 
Từ (1) và (2) suy ra AD=AE (3) 
Mặt khác ^DAB=^BAH; ^HAC=^CAE và ^BAH+^HAC=90* 
do đó ^DAB+^BAH+ ^HAC+^CAE=180* 
tức là D, A, E thẳng hàng (4) 
từ (3) và (4) suy ra D và E đối xứng với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE 
nên tam giác DHE vuông tại H. 

c) Tam giác ADB=tam giác AHB (c-c-c) 
suy ra ^ADB=^AHB=90* 
tương tự có ^AEC=90* 
suy ra BD//CE (cùng vuông góc với DE) 
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE 
nên BAEC là hình thang vuông. 

d) Do AB là đường trung trực của DH nên BD=BH (5) 
Do AC là đường trung trực của EH nên CE=CH (6) 
công vế với vế của (5) và (6) ta có BD+CE=BH+CH 
hay BD+CE=BC

k mik nha bn

25 tháng 7 2017

Thanks bn nha .Con bai đâu tiên

16 tháng 8 2017

A B C E K I H

a)do AE//AC(gt) , mà AC \(⊥\) AB( và tg ABC vg tại A) nên BE \(⊥\)AB => ^EBA=90

xét tg HBE và tg BAE có ; ^BHE=^ABE =90 ; ^E chung 

=> tg HBE \(\infty\) tg BAE (g.g)

b) xét tg ABE vuông tại B có:  AB^2 +BE^2 =AE^2

                                             => 4^2 +BE^2 =5^2  => BE=3 (vì BE>0)

=> Diện tích tg ABE  là  \(\frac{1}{2}.AB.BE=\frac{1}{2}.4.3=6\left(cm^2\right)\)

xét tg ABI có: AH \(⊥\) BI (gt) và  H là t/đ của BI (vì HB=HI)

=> tg ABI cân tại A => AH là đg pg của ^BAI hay AE là pg của ^BAK

=> \(\frac{BE}{AB}=\frac{EK}{AK}\). Mà \(\frac{BE}{AB}=\frac{3}{4}\Rightarrow\frac{EK}{AK}=\frac{3}{4}\)