Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình biểu diễn bằng hình vẽ trên.
Xét EAD và EDB chung đỉnh E, đáy AD gấp 2 lần đáy DB (10 : (15 -10) = 2)
=> S_EAD gấp 2 lần S_EDB => Diện tích EDB = 45 : 2 = 22,5 (cm2)
Diện tích BAE là : 45 + 22,5 = 67,5 (cm2)
Xét tam giác BAE và tam giác AEC có chung đỉnh B và đáy AE gấp 3 lần đáy EC (15 : (20-15) = 3)
=> Diện tích BAE gấp 3 lần diện tích AEC. Vậy diện tích AEC là : 67,5 : 3 =22,5 (cm2)
Vậy diện tích ABC là : 67,5 + 22,5 = 90 (cm2)
-Vì \(\dfrac{AE}{EC}=\dfrac{2}{1}\) nên \(EC=\dfrac{AE}{2}\)
Mà \(AE+EC=AC\) nên \(AE+\dfrac{AE}{2}=AC\)
\(\Rightarrow AE\times\left(1+\dfrac{1}{2}\right)=AC\)
\(\Rightarrow AE\times\left(\dfrac{2}{2}+\dfrac{1}{2}\right)=AC\)
\(\Rightarrow AE\times\dfrac{3}{2}=AC\)
\(\Rightarrow AE=\dfrac{2}{3}\times AC\)
\(\dfrac{S_{ADE}}{S_{ADC}}=\dfrac{AE}{AC}=\dfrac{\dfrac{2}{3}\times AC}{AC}=\dfrac{2}{3}\)
-Vì D là trung điểm của canh AB nên \(AD=\dfrac{AB}{2}\)
\(\dfrac{S_{ADC}}{S_{ABC}}=\dfrac{AD}{AB}=\dfrac{\dfrac{AB}{2}}{AB}=\dfrac{\dfrac{1}{2}}{1}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{S_{ADC}}{S_{ABC}}\times\dfrac{S_{ADE}}{S_{ADC}}=\dfrac{1}{2}\times\dfrac{2}{3}\)
\(\Rightarrow\dfrac{S_{ADE}}{S_{ABC}}=\dfrac{1}{3}\)
\(\Rightarrow S_{ADE}=\dfrac{S_{ABC}}{3}=\dfrac{180}{3}=60\left(cm^2\right)\)