Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADC có \(AC^2=AD^2+DC^2\)
nên ΔADC vuông tại D
b: Xét ΔABC có
AD là đường cao
AD là đường phân giác
Do đó: ΔABC cân tại A
c: Xét ΔBCE có
BA là đường cao
BA=CE/2
Do đó: ΔBCE vuông tại C
a: Xét ΔADC có \(AC^2=AD^2+DC^2\)
nên ΔADC vuông tại D
b: Xét ΔABC có
AD là đường cao
AD là đường phân giác
Do đó: ΔABC cân tại A
c: Xét ΔBCE có
BA là đường cao
BA=CE/2
Do đó: ΔBCE vuông tại C
a: Xét ΔADC có \(AC^2=AD^2+DC^2\)
nên ΔADC vuông tại D
b: Xét ΔABC có
AD là đường cao
AD là đường phân giác
Do đó: ΔABC cân tại A
c: Xét ΔBCE có
BA là đường cao
BA=CE/2
Do đó: ΔBCE vuông tại C
Ta có: EC⊥EB
mà EB⊥AD
nên EC//AD
a: Xét ΔADC có \(AC^2=AD^2+CD^2\)
nên ΔADC vuông tại D
b: Xét ΔABC có
AD là đường cao
AD là đường phân giác
Do đó: ΔABC cân tại A
c: Xét ΔBCE có
CA là đường trung tuyến
CA=BE/2
Do đó: ΔBCE vuông tại C
=)