K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

a) Xét tam giác ACB đỉnh C ta có : 
 

+ E là trung điểm AC

 + M là trung điểm BC

=> EM là đường trung bình của tam giác

=> EM=1/2 AB = AD=BD (1)( D là trung điểm của AB)

Xét tam giác ABC đỉnh C ta có : 

+ M là trung điểm của BC

+ D là trung điểm AB

=> MD là trung bình của tam giác ABC

=> MD = 1/2 AC = AE = EC (2) ( E là trung điểm AC)

Xét tứ giác AEMD có : 

 AD = EM (từ 1)

 DM = AE ( từ 2)

=> Tứ giác AEMD là hình bình hành

Lại có : F là trung điểm của đường chéo AM

=> F là giao điểm của đường chéo AM và DE

=> D,E,F thẳng hàng

b) Vì tứ giác AEMD là hình bình hành ( cm ở câu a)

Mà F lại là trung điểm của AM

=> F là trung điểm DE .

5 tháng 2 2022

-Ủa bài này câu c phải chứng minh trước câu b chứ?

a: Xét ΔMAB có MD là phân giác

nên AD/DB=AM/MB=AM/MC

Xét ΔMAC ó ME là phân giác

nên AE/EC=AM/MC=AD/DB

=>ED//BC

b: Xét ΔMAB có MD là phân giác

nên AD/DB=AM/MB=5/3

=>AD/AB=5/8

Xét ΔABC có DE//BC

nên DE/BC=AD/AB

=>DE/6=5/8

=>DE=3,75cm

14 tháng 12 2022

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

=>BDEC là hình thang

b: Xét tứ giác DECF có

DE//CF

DF//CE

Do đó: DECF là hình bình hành

=>DC cắt EF tại trung điểm của mỗi đường

=>E,M,F thẳng hàng

14 tháng 12 2022

giúp câu C cái song song vs chủ yếu đang cần câu C á

a) Xét ∆ABC có : 

D là trung điểm AB 

E là trung điểm BC 

=> DE là đường trung bình ∆ABC 

=> DE//AC , DE = \(\frac{1}{2}AC\)\(\frac{16}{2}=8\)cm

Xét ∆ABC có : 

E là trung điểm BC 

F là trung điểm AC 

=> FE là đường trung bình ∆ABC 

=> FE//AB , FE = \(\frac{1}{2}AB=6cM\)

Xét tứ giác AFED có : 

AD//EF ( AB//FE , D\(\in\)AB )

DE//FA ( DE//AC , F \(\in\)AC )

=> AFED là hình bình hành 

Mà BAC = 90° 

=> AFED là hình chữ nhật 

=> DEF= EFA = FAD = ADE = 90° 

Vì F là trung điểm AC 

=> FA = FC = 8cm

Áp dụng định lý Py - ta -go vào ∆AEF ta có : 

AE2 = FE2 + AF2 

=> AE = 10cm

b) Xét ∆ABC ta có : 

D là trung điểm AB 

F là trung điểm AC 

=> DF là đường trung bình ∆ABC 

=> DF//BC  

Xét tứ giác BEFD ta có : 

BE//DF ( BC//DF , E \(\in\)BC )

BD//FE ( AB//FE , D\(\in\)AB )

=> BEFD là hình bình hành 

c) Chứng minh trên