Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ACB đỉnh C ta có :
+ E là trung điểm AC
+ M là trung điểm BC
=> EM là đường trung bình của tam giác
=> EM=1/2 AB = AD=BD (1)( D là trung điểm của AB)
Xét tam giác ABC đỉnh C ta có :
+ M là trung điểm của BC
+ D là trung điểm AB
=> MD là trung bình của tam giác ABC
=> MD = 1/2 AC = AE = EC (2) ( E là trung điểm AC)
Xét tứ giác AEMD có :
AD = EM (từ 1)
DM = AE ( từ 2)
=> Tứ giác AEMD là hình bình hành
Lại có : F là trung điểm của đường chéo AM
=> F là giao điểm của đường chéo AM và DE
=> D,E,F thẳng hàng
b) Vì tứ giác AEMD là hình bình hành ( cm ở câu a)
Mà F lại là trung điểm của AM
=> F là trung điểm DE .
a: Xét ΔMAB có MD là phân giác
nên AD/DB=AM/MB=AM/MC
Xét ΔMAC ó ME là phân giác
nên AE/EC=AM/MC=AD/DB
=>ED//BC
b: Xét ΔMAB có MD là phân giác
nên AD/DB=AM/MB=5/3
=>AD/AB=5/8
Xét ΔABC có DE//BC
nên DE/BC=AD/AB
=>DE/6=5/8
=>DE=3,75cm
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>BDEC là hình thang
b: Xét tứ giác DECF có
DE//CF
DF//CE
Do đó: DECF là hình bình hành
=>DC cắt EF tại trung điểm của mỗi đường
=>E,M,F thẳng hàng
a) Xét ∆ABC có :
D là trung điểm AB
E là trung điểm BC
=> DE là đường trung bình ∆ABC
=> DE//AC , DE = \(\frac{1}{2}AC\)= \(\frac{16}{2}=8\)cm
Xét ∆ABC có :
E là trung điểm BC
F là trung điểm AC
=> FE là đường trung bình ∆ABC
=> FE//AB , FE = \(\frac{1}{2}AB=6cM\)
Xét tứ giác AFED có :
AD//EF ( AB//FE , D\(\in\)AB )
DE//FA ( DE//AC , F \(\in\)AC )
=> AFED là hình bình hành
Mà BAC = 90°
=> AFED là hình chữ nhật
=> DEF= EFA = FAD = ADE = 90°
Vì F là trung điểm AC
=> FA = FC = 8cm
Áp dụng định lý Py - ta -go vào ∆AEF ta có :
AE2 = FE2 + AF2
=> AE = 10cm
b) Xét ∆ABC ta có :
D là trung điểm AB
F là trung điểm AC
=> DF là đường trung bình ∆ABC
=> DF//BC
Xét tứ giác BEFD ta có :
BE//DF ( BC//DF , E \(\in\)BC )
BD//FE ( AB//FE , D\(\in\)AB )
=> BEFD là hình bình hành
c) Chứng minh trên