Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEF có
D là trung điểm của AE
DG//EF
Do đó: G là trung điểm của AF
Suy ra: AG=GF(1)
Xét hình thang BDGC có
E là trung điểm của DB
EF//DG//BC
Do đó: F là trung điểm của GC
Suy ra: GF=FC(2)
Từ (1) và (2) suy ra AG=GF=FC
b: Xét ΔAFE có
D là trung điểm của AE
G là trung điểm của AF
Do đó:DG là đường trung bình của ΔAFE
Suy ra: \(DG=\dfrac{EF}{2}\)
hay EF=10cm
Hình thang DGCB có
E là trung điểm của DB
F là trung điểm của GC
Do đó: EF là đường trung bình của hình thang DGCB
Suy ra: \(EF=\dfrac{DG+BC}{2}\)
\(\Leftrightarrow10=\dfrac{5+BC}{2}\)
hay BC=15(cm)
a: Xét ΔAEF có
D là trung điểm cua AE
DG//EF
Do đó: G là trug điểm của AF
=>AG=GF(1)
Xét hình thang BDGC có
E là trung điểm của BD
EF//DG//BC
Do đó: F là trung điểm của GC
=>FG=FC(2)
Từ (1) và (2) suy ra AG=GF=FC
Áp dụng định lý Ta-lét:
Với EF // CD ta có A F A D = A E A C
Với DE // BC ta có A E A C = A D A B
Suy ra A F A D = A D A B , tức là A F 6 = 6 9
Vậy AF = 6.6 9 = 4 cm
Đáp án: C
Về bài hóa, bạn lên h.vn để hỏi nhé.
Mình làm 2 bài toán.
Bài 2 :
DE // AC \(\Rightarrow\frac{AE}{AB}=\frac{CD}{BC}\)( Định lý Ta-lét)
DF//AB \(\Rightarrow\frac{AF}{AC}=\frac{BD}{CD}\)(Định lý Ta-lét)
\(\Rightarrow\frac{AE}{AB}+\frac{AF}{AC}=\frac{BD}{BC}+\frac{CD}{BC}=\frac{BC}{BC}=1\)
Vậy ....
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD