Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Vì \(\dfrac{AE}{EC}=\dfrac{2}{1}\) nên \(EC=\dfrac{AE}{2}\)
Mà \(AE+EC=AC\) nên \(AE+\dfrac{AE}{2}=AC\)
\(\Rightarrow AE\times\left(1+\dfrac{1}{2}\right)=AC\)
\(\Rightarrow AE\times\left(\dfrac{2}{2}+\dfrac{1}{2}\right)=AC\)
\(\Rightarrow AE\times\dfrac{3}{2}=AC\)
\(\Rightarrow AE=\dfrac{2}{3}\times AC\)
\(\dfrac{S_{ADE}}{S_{ADC}}=\dfrac{AE}{AC}=\dfrac{\dfrac{2}{3}\times AC}{AC}=\dfrac{2}{3}\)
-Vì D là trung điểm của canh AB nên \(AD=\dfrac{AB}{2}\)
\(\dfrac{S_{ADC}}{S_{ABC}}=\dfrac{AD}{AB}=\dfrac{\dfrac{AB}{2}}{AB}=\dfrac{\dfrac{1}{2}}{1}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{S_{ADC}}{S_{ABC}}\times\dfrac{S_{ADE}}{S_{ADC}}=\dfrac{1}{2}\times\dfrac{2}{3}\)
\(\Rightarrow\dfrac{S_{ADE}}{S_{ABC}}=\dfrac{1}{3}\)
\(\Rightarrow S_{ADE}=\dfrac{S_{ABC}}{3}=\dfrac{180}{3}=60\left(cm^2\right)\)