K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 5 2018

Lời giải:

Ta thấy $y$ là hàm số bậc 3 nên có nhiều nhất hai giá trị cực trị. Như vậy để đths có 2 điểm cực trị $A,B$ thì hoành độ $A,B$ là hai nghiệm của pt :

\(y'=0\)

\(\Leftrightarrow 6x^2-6(m+1)x+6m=0\)

\(\Leftrightarrow 6(x-m)(x-1)=0\)

Từ đây suy ra \(m\neq 1\). Hai điểm cực trị của đths là \(A(m, -m^3+3m^2); B(1, -1+3m)\)

\(\Rightarrow \overrightarrow{AB}=(1-m, m^2-3m^2+3m-1)\)

Để đt \(AB\) vuông góc với đt \(x-y+2=0\) thì:

\((1-m, m^3-3m^2+3m-1)=k(1,-1)\)

\(\Rightarrow \frac{1-m}{m^3-3m^2+3m-1}=-1\)

\(\Leftrightarrow \frac{1-m}{(m-1)^3}=-1\Leftrightarrow \frac{-1}{(m-1)^2}=-1\)

\(\Leftrightarrow m=0 \) hoặc $m=2$

Đáp án D

13 tháng 12 2018

Chỉ em cách biến đổi y' thành 6(x-m)(x-1) được không ạ