Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
ta có
góc DAE= 1/2 góc BAC ( AD là tia phân giác góc BAC)
goc FEC=1/2 góc DEC (EF là tia phân giác góc DEC)
góc BAC= góc DEC (2 góc đồng vị và AB//DE)
-> goc DAE=góc FEC
mà góc DAE và góc FEC nằm ở vị trí đồng vị
nên AD//EF
ta có
góc DAE =1/2 góc BAC (AD là tia phân giác góc BAC)
góc EAK=1/2 góc EAz ( AK là tia phân giác góc zAC)
-> góc DAE+ góc EAK= 1/2 ( góc BAC+ góc EAz)
mà góc BAC + góc EAz=180 ( 2 góc kề bù)
nên goc DAE+ góc EAK=1/2.180=90
-> goc DAK =90
-> DA vuông góc AK
lại có EK vuông góc At tai K (gt)
do dó AD//EK
ta có
AD//EK (cmt)
AD//EF(cmt)
-> EK trùng EF ( tiên đề Ơ clit)
-> E,K,F thẳng hàng
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>MF=ME
=>M là trung điểm của EF
=>BD=CE
Bạn xem lại đề bài nhé!