K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2020

Dễ thấy \(BC=CH+BH=16+9=25\left(cm\right)\)

Từ đó ta có thể tính được:

\(\hept{\begin{cases}AB^2=BH.BC=9.25=225\\AC^2=CH.BC=16.25=400\end{cases}}\Rightarrow\hept{\begin{cases}AB=15\left(cm\right)\\AC=20\left(cm\right)\end{cases}}\)

và \(AH^2=BH.HC=9.16=144\Rightarrow AH=12\left(cm\right)\)

Vậy AH = 12 cm ; BC = 25 cm ; AB = 15 cm ; AC = 20 cm

25 tháng 6 2019

Ta có: 

\(\frac{1}{AB}+\frac{1}{AC}+\frac{1}{AH}=1\)

\(\Leftrightarrow\frac{1}{AB^2}+\frac{1}{AC^2}+\frac{1}{AH^2}+\frac{2}{AB.AC}+\frac{2}{AC.AH}+\frac{2}{AB.AH}=1\)

\(\Leftrightarrow\frac{2}{AH^2}+\frac{2}{AH.BC}+\frac{2}{AC.AH}+\frac{2}{AB.AH}=1\)(Do \(\hept{\begin{cases}\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\\AB.AC=AH.BC\end{cases}}\)(Hệ thức lượng)

\(\Leftrightarrow\frac{2}{AH}\left(\frac{1}{AH}+\frac{1}{BC}+\frac{1}{AB}+\frac{1}{AC}\right)=1\)

\(\Leftrightarrow\frac{2}{AH}\left(1+\frac{1}{BC}\right)=1\)(Do \(\frac{1}{AB}+\frac{1}{AC}+\frac{1}{AH}=1\))

\(\Leftrightarrow\frac{BC+1}{BC}=\frac{AH}{2}\)

\(\Leftrightarrow2\left(BC+1\right)=AH.BC\)

\(\Leftrightarrow4BC+4=2AB.AC\)(Do AH.BC = AB.AC)

Kết hợp với Py-ta-go trong tam giác vuông ABC: \(BC^2=AB^2+AC^2\)

\(\Rightarrow BC^2+4BC+4=AB^2+2AB.AC+AC^2\)

\(\Leftrightarrow\left(BC+2\right)^2=\left(AB+AC\right)^2\)

\(\Leftrightarrow AB+AC=BC+2\)(Do \(\hept{\begin{cases}BC+2>0\\AB+AC>0\end{cases}}\))

Mà 3 cạnh AB,AC,BC là 3 cạnh nguyên lớn hơn 0

=> Chỉ có 2 cặp (AB,AC,BC) thỏa mãn: \(\left(3,4,5\right),\left(4,3,5\right)\)

25 tháng 6 2019

lớp 7 lạc trôi kaka

17 tháng 10 2017

a. BC= 4+9=15 cm

=> AB2= 15*4=60=\(2\sqrt{15}\)cm

AH2= 60-16=44

AH= \(2\sqrt{11}\)

b. \(\widehat{B}\)\(\frac{AH}{BH}=\frac{\sqrt{11}}{2}\)

=> \(\widehat{B}=66\)độ 91 phút

=> AC= 15*tanB=36,24

C.

17 tháng 10 2017

Có thể sai đó bạn

21 tháng 5 2019

ta có ab\(^2\)+ ac\(^2\) =  90 + 160

                                =250

lại có bc\(^2\) =250

\(\Rightarrow\)ab\(^2\) + ac\(^2\) = bc\(^2\) ( = 250 )

\(\Rightarrow\)tam giác abc vuông tại a

\(\sin b\) = \(\frac{ac}{bc}\) = \(\frac{40}{50}\) = \(\frac{4}{5}\)

\(\tan c\)\(\frac{ab}{ac}\) = \(\frac{30}{40}\) = \(\frac{3}{4}\)

\(\widehat{b}\)\(\approx\) 53.1

\(\widehat{c}\) \(\approx\) 36.9

áp dụng htl vào tam giác abc vuông tại a có

ah * bc = ab * ac

\(\Rightarrow\)ah = \(\frac{ab\cdot ac}{bc}\) =24(dvdd)

áp dụng đ/lí pytago vào tam giác ahb vuông tại h có

bh\(^2\)= ab\(^2\)- ah\(^2\)=324

\(\Rightarrow\)bh = \(\sqrt{324}\)= 18 (dvdd)

áp dụng đ/lí pytago vào tam giác ahc vuông tại h có

ch\(^2\)= ac\(^2\)-ah\(^2\) = 1024

\(\Rightarrow\)ch=\(\sqrt{1024}\)=32(dvdd)