K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 8 2020

anh tuấn: sorry mình gõ nhầm á. Mình sẽ sửa lại.

AH
Akai Haruma
Giáo viên
31 tháng 8 2020

anh tuấn

Vì $M,N, P$ là trung điểm của các cạnh $AB, BC, CA$ nên các cạnh $AB=2NP; BC=2PM; CA=2MN$ theo tính chất đường trung bình.

Khi đó ta nói $\triangle ABC\sim \triangle NPM$ theo tỷ lệ $k=2$ đó bạn.

AH
Akai Haruma
Giáo viên
28 tháng 8 2017

Lời giải:

Ta biết một vài tính chất của hình bình hành có tâm $O$:

\(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}=0\)

a) Ta có:

\(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=4\overrightarrow{ID}\)

\(\Leftrightarrow \overrightarrow{IO}+\overrightarrow{OA}+\overrightarrow{IO}+\overrightarrow{OB}+\overrightarrow{IO}+\overrightarrow{OC}=4\overrightarrow{IO}+4\overrightarrow{OD}\)

\(\Leftrightarrow \overrightarrow{OB}=\overrightarrow{IO}+4\overrightarrow{OD}\Leftrightarrow{OB}-\overrightarrow{OD}=\overrightarrow{IO}+3\overrightarrow{OD}\)

\(\Leftrightarrow{DB}-3\overrightarrow{OD}=\overrightarrow{IO}\)

\(\Leftrightarrow 2\overrightarrow{DO}-3\overrightarrow{OD}=\overrightarrow{IO}\)

\(\Leftrightarrow 5\overrightarrow{DO}=\overrightarrow{IO}\)

Do đó điểm $I$ nằm trên đường thẳng $DO$ sao cho $IO=5DO$

b)

\(2\overrightarrow{FA}+2\overrightarrow{FB}=3\overrightarrow{FC}-\overrightarrow{FD}\)

\(\Leftrightarrow 2\overrightarrow{FO}+2\overrightarrow{OA}+2\overrightarrow{FO}+2\overrightarrow{OB}=3\overrightarrow{FO}+3\overrightarrow{OC}-(\overrightarrow{FO}+\overrightarrow{OD})\)

\(\Leftrightarrow 2\overrightarrow{FO}+2\overrightarrow{OA}-3\overrightarrow{OC}+2\overrightarrow{OB}+\overrightarrow{OD}=0\)

\(\Leftrightarrow 2\overrightarrow{FO}+5\overrightarrow{OA}+\overrightarrow{OB}=0\)

Lấy điểm $I$ thỏa mãn \(5\overrightarrow{IA}+\overrightarrow{IB}=0\)

\(\Rightarrow 2\overrightarrow{FO}+5\overrightarrow{OI}+5\overrightarrow{IA}+\overrightarrow{OI}+\overrightarrow{IB}=0\)

\(\Leftrightarrow 2\overrightarrow{FO}+6\overrightarrow{OI}=0\Rightarrow \overrightarrow {OF}=3\overrightarrow {OI}\)

Điểm I thỏa mãn nằm trên đoạn $AB$ sao cho $5IA=IB$

Điểm F thỏa mãn nằm trên đường thẳng $OI$ sao cho $OF=3OI$ và I nằm giữa $OF$

c)

\(4\overrightarrow{KA}+3\overrightarrow{KB}+2\overrightarrow{KC}+\overrightarrow{KD}=0\)

\(\Leftrightarrow 4\overrightarrow{KO}+4\overrightarrow{OA}+3\overrightarrow{KO}+3\overrightarrow{OB}+2\overrightarrow{KO}+2\overrightarrow{OC}+\overrightarrow{KO}+\overrightarrow{OD}=0\)

\(\Leftrightarrow 10\overrightarrow{KO}+2\overrightarrow{OA}+\overrightarrow{OB}=0\)

\(\Leftrightarrow 5\overrightarrow{KO}+\overrightarrow{OA}+\overrightarrow{OB}=0\)

Lấy $I$ là trung điểm của AB thì \(\overrightarrow{IA}+\overrightarrow{IB}=0\)

\(\Rightarrow 0=5\overrightarrow{KO}+\overrightarrow{OA}+\overrightarrow{OB}=5\overrightarrow{KO}+\overrightarrow{OI}+\overrightarrow{IA}+\overrightarrow{OI}+\overrightarrow{IB}\)

\(\Leftrightarrow 0=5\overrightarrow{KO}+2\overrightarrow{OI}\Leftrightarrow 5\overrightarrow{OK}=2\overrightarrow{OI}\)

Do đó điểm K nằm trên đoạn thẳng OI sao cho $5OK=2OI$

27 tháng 8 2017

giúp mình nhá mình cần ngay cảm ơn mọi người

30 tháng 11 2021

\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\)⇒ O là trọng tâm tam giác ABC

\(\overrightarrow{K\text{A}}+2\overrightarrow{KB}=\overrightarrow{CB}=\overrightarrow{0}\Rightarrow\overrightarrow{K\text{A}}+\overrightarrow{KB}+\overrightarrow{KB}+\overrightarrow{BC}=\overrightarrow{0}\Rightarrow\overrightarrow{K\text{A}}+\overrightarrow{KB}+\overrightarrow{KC}=\overrightarrow{0}\)

⇒ K là trọng tâm tam giác ABC

Câu cuối chịu :))

25 tháng 9 2019

MA+MC= MA-MB

<=> 2 MI=BA

=> MI=BA/2

=> I thuộc đường tròn I bán kính AB/2

25 tháng 9 2019

nãy mk quên giải thik: 

a, gọi I la trung điểm của AC=> MA+MC=2MI

hok tốt