K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

các bạn làm ơn giúp mình vs mình đang cần gấp ạ !!!

10 tháng 2 2018

bạn tự vẽ hình nhé

CM tam giác ABC= tam giác AEG

\(\Rightarrow\)góc GEA= góc ABC

       góc EGA = góc ACB

ta có góc HAC= góc ABH ( cùng phụ goc BAH)

góc OAE= góc HAC 

\(\Rightarrow\) góc OEA= góc OAE

\(\Rightarrow\)OA=OE

CMTT: OA=OG

suy ra  OE=OG     (1)

ta có góc GAC+ HAC+BAH=180độ

mà BAH=OAG

 \(\Rightarrow\) OAG+GAC+HAC=180 độ

O,A ,H thẳng hàng(2)

từ 1 va 2 suy ra đfcm

O là trung điểm EG

10 tháng 2 2018

Bạn vẽ hình đi mk làm cho nha

3 tháng 4 2019

Đề này bị thiếu rồi. Phải có thêm điều kiện tam giác ABC vuông hoặc cân nữa mới làm được câu c.

9 tháng 6 2016

Gọi giao điểm của hai đường chéo là O giao điểm của hai cạnh bên là S,giao điểm của SO với AB,CD lần lượt là X,Y.
Ta có AX//YC nên theo định lý Ta lét ta có:
\(\frac{AX}{YC}\)=\(\frac{AO}{OC}\)=\(\frac{AB}{DC}\)=\(\frac{AX}{DY}\)
=>YC=DY
Vậy Y là trung điểm của DC.
Ta có AB//DC theo định lý Ta-lét ta có:
\(\frac{AX}{DY}\)=\(\frac{SX}{XY}\)=\(\frac{XB}{YC}\)
mà DY=YC(c/m trên)
=>AX=XB=>X là trung điểm của AB
Vậy giao điểm của SO với AB,CD tại trung điểm của các cạnh đó
=>đpcm
Ta cũng dễ dàng chứng mình được đường thẳng chứa 4 điểm đó là trùng trực của hai cạnh đấy sao khi chừng minh chúng thẳng hàng ở trên nhé!

27 tháng 12 2017

Gọi giao điểm của hai đường chéo là O giao điểm của hai cạnh bên là S,giao điểm của SO với AB,CD lần lượt là X,Y.
Ta có AX//YC nên theo định lý Ta lét ta có:
AXYCAXYC=AOOCAOOC=ABDCABDC=AXDYAXDY
=>YC=DY
Vậy Y là trung điểm của DC.
Ta có AB//DC theo định lý Ta-lét ta có:
AXDYAXDY=SXXYSXXY=XBYCXBYC
mà DY=YC(c/m trên)
=>AX=XB=>X là trung điểm của AB
Vậy giao điểm của SO với AB,CD tại trung điểm của các cạnh đó
=>đpcm
 

a) Xét tứ giác AEMF có 

\(\widehat{AFM}=90^0\)(gt)

\(\widehat{AEM}=90^0\)(gt)

\(\widehat{FAE}=90^0\)(gt)

Do đó: AFME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AM=EF(Hai đường chéo của hình chữ nhật AFME)

b) Gọi O là giao điểm của AM và EF

Ta có: AMFE là hình chữ nhật(cmt)

nên Hai đường chéo AM và EF cắt nhau tại trung điểm của mỗi đường và bằng nhau(Định lí hình chữ nhật)

mà O là giao điểm của AM và EF(gt)

nên O là trung điểm của AM; O là trung điểm của EF

Ta có: ΔAHM vuông tại H(gt)

mà HO là đường trung tuyến ứng với cạnh huyền AM(O là trung điểm của AM)

nên \(HO=\dfrac{AM}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà AM=EF(cmt)

nên \(HO=\dfrac{EF}{2}\)

Xét ΔHFE có 

HO là đường trung tuyến ứng với cạnh EF(O là trung điểm của EF)

\(HO=\dfrac{EF}{2}\)(cmt)

Do đó: ΔHFE vuông tại H(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)