Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tg ACE và AKE có :
AE-chung
\(\widehat{CAE}=\widehat{KAE}\left(gt\right)\)
\(\widehat{ACE}=\widehat{AKE}=90^o\)
=> Tg ACE=AKE
=> AC=AK
CE=Ek
=> AE là đường trung trực của CK
=> CK vuông góc AE (đccm)
b) Tg ABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)
\(\Rightarrow\widehat{ABC}+90^o+60^o=180^o\)
\(\Rightarrow\widehat{ABC}=30^o\)
\(\Rightarrow\widehat{ABC}=\widehat{BAE}=\frac{\widehat{BAC}}{2}=\frac{60^o}{2}=30^o\)
=> Tg AEB cân tại E
\(EK\perp AB\)
\(\Rightarrow AK=KB=\frac{AB}{2}\) (t/c các đường trong tg cân)
Mà AK=AC (cmt)
\(\Rightarrow AC=\frac{AB}{2}\Rightarrow2AC=AB\left(đccm\right)\)
c) Xét tg KEB vuông tại K có KB<EB (cgv<ch)
Mà KB=KA=AC
=> AC<EB (đccm)
d) Tự cm nốt :)))
#H
a: Xét ΔACE vuông tại C và ΔAKE vuông tạiK có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
=>AC=AK và EC=EK
=>AE là trung trực của CK
b: Xét ΔABC vuông tại A có cosA=AC/AB
=>AC/AB=1/2
=>AB=2AC
Xét ΔEAB có góc EAB=góc EBA
nên ΔEAB cân tại E
=>EA=EB>AC
a) Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)(AE là tia phân giác của \(\widehat{CAK}\))
Do đó: ΔACE=ΔAKE(Cạnh huyền-góc nhọn)
Suy ra: AC=AK(hai cạnh tương ứng) và EC=EK(hai cạnh tương ứng)
Ta có: AC=AK(cmt)
nên A nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: EC=EK(cmt)
nên E nằm trên đường trung trực của CK(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AE là đường trung trực của CK
hay AE⊥CK(đpcm)
b) Ta có: ΔABC vuông tại C(gt)
nên \(\widehat{CAB}+\widehat{CBA}=90^0\)
\(\Leftrightarrow\widehat{EBA}=90^0-60^0=30^0\)(3)
Ta có: AE là tia phân giác của \(\widehat{CAB}\)(gt)
nên \(\widehat{EAB}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^0}{2}=30^0\)(4)
Từ (3) và (4) suy ra \(\widehat{EAB}=\widehat{EBA}\)
Xét ΔEBA có \(\widehat{EAB}=\widehat{EBA}\)(cmt)
nên ΔEBA cân tại E(Định lí đảo của tam giác cân)
Xét ΔEKA vuông tại K và ΔEKB vuông tại K có
EA=EB(ΔEBA cân tại E)
EK chung
DO đó: ΔEKA=ΔEKB(cạnh huyền-cạnh góc vuông)
Suy ra: KA=KB(hai cạnh tương ứng)
c) Ta có: ΔEKB vuông tại K(gt)
nên EB là cạnh lớn nhất(EB là cạnh huyền)
hay EB>EK
mà EK=EC(cmt)
nên EB>EC(đpcm)
Câu hỏi của Marklin_9301 - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó: ΔACE=ΔAKE
Suy ra: AC=AK và EC=EK
=>AE là đường trung trực của CK
=>AD là đường trung trực của CK
b: Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)
nên ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
hay KA=KB
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
=>AC=AK
c: Xét ΔAIB có
AD vừa là đường cao, vừa là phân giác
=>ΔAIB cân tại A
=>IE là phân giác của góc BIA