Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có hai trường hợp \(\widehat{IEC}=90^o\): hoặc \(\widehat{EIC}=90^o\)
TH1: Tam giác IEC vuông tại E
Do I là tâm đường tròn nội tiếp nên BI, CI là các phân giác.
Xét tam giác IBC, có IE là đường cao đồng thời là trung tuyến nên nó là tam giác cân tại I. Vậy \(\widehat{IBE}=\widehat{ICE}\Rightarrow2.\widehat{IBE}=2.\widehat{ICE}\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Vậy ABC là tam giác vuông cân hay \(\frac{AB}{AC}=1;\frac{AB}{BC}=\frac{AC}{BC}=\frac{1}{\sqrt{2}}.\)
TH2: Tam giác IEC vuông tại I.
Ta thấy \(\widehat{ABC}+\widehat{ACB}=90^o\Rightarrow\widehat{IBC}+\widehat{ICB}=\frac{90^o}{2}=45^o\)
Xét tam giác IBC , ta có \(\widehat{BIE}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)-\widehat{CIE}=180^o-45^o-90^o=45^o\)
Trên AB lấy điểm E' sao cho BE' = BE. Ta thấy ngay \(\Delta BEI=\Delta BE'I\left(c-g-c\right)\Rightarrow\hept{\begin{cases}\widehat{BIE'}=\widehat{BIE}=45^o\\IE=IE'\end{cases}}\)
Vậy thì \(\widehat{E'IC}=180^o\Rightarrow\) E', I, C thẳng hàng.
Xét tam giác BE'C, theo tính chất đường phân giác trong tam giác thì
\(\frac{E'I}{IC}=\frac{BE'}{BC}=\frac{BE}{BC}=\frac{1}{2}\)
Vậy thì \(\frac{IE}{IC}=\frac{1}{2}\Rightarrow tan\widehat{BCE'}=\frac{1}{2}\Rightarrow\widehat{BCE}\approx26^o34'\)
\(\frac{AB}{AC}=tan\widehat{BCA}=\frac{4}{3}\Rightarrow\frac{AB}{BC}=\frac{4}{5};\frac{AC}{BC}=\frac{3}{5}.\)
Cho tam giác ABC vuông tại A, đường cao AH. Tia phân giác của các góc BAH và CAH cắt BC lần lượt tại D và E. Gọi O là giao điểm các...- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!
I là tâm đường tròn nội tiếp tam giác và E là tiếp điểm
nên IE⊥AC, mà A^=90o suy ra IE//AB
⇒ANEI=AMEM
⇒AN=AM.EIEM=AC.EI2(AM−AE) (1)
Tứ giác AEIF là hình vuông nên AE=EI;
D, E, F là các tiếp điểm
⇒AE+CD+BD=12(BC+CA+AB)⇒AE=AC+AB−BC2,
thay vào (1) ta được ...
TL:
BC2 nha bạn
HT