Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có AB=AC
=> TAM GIÁC ABC CÂN TẠI A
=> B=C
XÉT TAM GIÁC ABM VÀ TAM GIÁC ACM CÓ
AB = AC(GT)
B = C (CMT)
BM=MC(M LÀ TRUNG ĐIỂM CỦA BC)
=> TAM GIÁC ABM = TAM GIÁC ACM (C-G-C)
B) XÉT \(\Delta AMC\)VÀ \(\Delta EMB\)CÓ
\(BM=MC\left(GT\right)\)
\(\widehat{AMC}=\widehat{EMB}\)(ĐỐI ĐỈNH)
\(MA=ME\left(GT\right)\)
\(\Rightarrow\Delta AMC=\Delta EMB\left(C-G-C\right)\)
\(\Rightarrow\widehat{BEA}=\widehat{CAE}\)HAI GÓC TƯƠNG ỨNG
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
\(\Rightarrow AC//BE\)
a. Xét ΔAMC và ΔBMD, ta có:
BM = MC (gt)
\(\widehat{AMB}=\widehat{BMC}\) (2 góc đối đỉnh)
AM = MD (gt)
Suy ra: ΔAMC = ΔDMB (c.g.c)
⇒ \(\widehat{MAC}=\widehat{D}\) (2 góc tương ứng)
Suy ra: AC // BD
(vì có 2 góc ở vị trí so le trong bằng nhau)
Mà AB ⊥ AC (gt) nên AB ⊥ BD.
\(\Rightarrow\widehat{ABD}\) = 90 độ
Vì ΔAMC = ΔDMB (câu a)
=> AC = BD
Xét ΔABC và ΔBAD có :
\(\widehat{BAC}=\widehat{ABD}=90^o\left(gt\right)\)
AB là cạnh chung
AC = BD (cmt)
=> ΔABC = ΔBAD (c.g.c)
a) xét tam giác ABM và tam giác ECM có:
AM = ME (gt)
góc AMB = góc CME ( đối đỉnh)
BM = CM ( M là trung tuyến)
=> tam giác ABM = tam giác ECM ( c.g.c)
b) ???
c) xem SGK
tam giác abm = tam giác ecm (c-g-c)