Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)
MB=MC
Do đó: ΔMAB=ΔMEC
b: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: AB//EC
a Xét ΔAMB và ΔEMC có
MA=ME
góc AMB=góc EMC
MB=MC
Do đó: ΔAMB=ΔEMC
b: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó: ABEC là hình bình hành
SUy ra: AB//CE
a) Xét hai tam giác ABM và ECM có:
MB = MC (do AM là đường trung tuyến)
\(\widehat{AMB}=\widehat{EMC}\) (đối đỉnh)
MA = ME (gt)
Vậy: \(\Delta ABM=\Delta ECM\left(c-g-c\right)\).
b) Vì \(\Delta ABM=\Delta ECM\left(cmt\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CEM}\) (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong
Do đó: AB // CE (đpcm).
HÌNH BẠN TỰ VẼ NHÁ
a. Xét ∆ABM=∆ECM có:
BM=MC ( trung tuyến AM )
AM=ME
góc AMB=EMC ( đối đỉnh)
=> ∆ABM=∆ECM ( c.g.c )
b. ∆ABM=∆ECM => góc ABM=ECM
mà góc ABM=90 độ
=> góc ECM=90 độ
=> EC vuông góc với BC
c. ∆ABM=∆ECM => góc CEM=BAM
mà 2 góc ở vị trí so le trong
=> AB//CE
d. Xét tam giác ABC có góc ABC=90 độ => AC>AB
mà AB=CE ( ∆ABM=∆ECM
=> AC>CE
Xét tam giác ACE có: AC>CE
=> góc CEA > CAE
mà góc CEA=BAM
=> góc BAM> CAE
hay góc BAM> MAC
e, Xét tam giác MHC có góc MHC=90 độ
=> MC>MH
mà MC=MB
=> MB> MH
a. Xét ∆ABM=∆ECM có:
BM=MC ( trung tuyến AM )
AM=ME
góc AMB=EMC ( đối đỉnh)
=> ∆ABM=∆ECM ( c.g.c )
b. ∆ABM=∆ECM => góc ABM=ECM
mà góc ABM=90 độ
=> góc ECM=90 độ
=> EC vuông góc với BC
c. ∆ABM=∆ECM => góc CEM=BAM
mà 2 góc ở vị trí so le trong
=> AB//CE
d. Xét tam giác ABC có góc ABC=90 độ => AC>AB
mà AB=CE ( ∆ABM=∆ECM
=> AC>CE
Xét tam giác ACE có: AC>CE
=> góc CEA > CAE
mà góc CEA=BAM
=> góc BAM> CAE
hay góc BAM> MAC
e, Xét tam giác MHC có góc MHC=90 độ
=> MC>MH
mà MC=MB
=> MB> MH