K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

B A C M E P Q 1 1 1 2 2 2 3 4

a) Xét t/giác ABM và t/giác ECM

có:  AM = ME (gt)

   BM = MC (gt)

 \(\widehat{M1}=\widehat{M2}\)(đối đỉnh)

=> t/giác ABM = t/giác ECM (c.g.c)

=> \(\widehat{B1}=\widehat{C1}\)(2 góc t/ứng)

mà \(\widehat{B1}=90^0\) => \(\widehat{C1}=90^0\)hay góc ECB = 900

b) Xét t/giác AMC và t/giác EMB

có: AM = ME (gt)

  BM = MC (gt)

\(\widehat{AMC}=\widehat{BME}\)(đối đỉnh)

=> t/giác AMC = t/giác EMB (c.g.c)

=> \(\widehat{C2}=\widehat{B2}\)(2 góc t/ứng)

mà 2 góc này ở vị trí so le trong

=> EB // AC

c) Xét t/giác PMC và t/giác QMB

có: \(\widehat{B2}=\widehat{C2}\)(cmt)

 BQ = CP (gt)

 AM = MC (gt)

=> t/giác PMC = t/giác QMB (c.g.c)

=> \(\widehat{M3}=\widehat{M4}\)(2 góc t/ứng)

Do B, M, C thẳng hàng => \(\widehat{M1}+\widehat{AMP}+\widehat{M4}=180^0\)

 <=> \(\widehat{M1}+\widehat{AMP}+\widehat{M3}=180^0\) =>  P, M, Q thẳng hàng

24 tháng 4 2015

 

 

b) xét tam giác ICM và BMK có IC=BK ; MB=MC ; gocKBM=ICM(theo câu a ) suy ra  ICM=BMK(c.g.c) suy ra BMK=CMI(đổi định) suy ra  I ; M ;K THẲNG HÀNG

 

a) xet tam giac AMC va EBM co BM=CM : AM=ME M1=M suy ra EMB=EBM suy ra AC=EB            ta co goc MAC=goc MEB suy ra AC//BE (so le trong)

15 tháng 4 2022

bạn tham khảo link này nha:

https://qanda.ai/vi/solutions/zag1U2SSkY.

4 tháng 11 2016
a)AC=EB và AC//BEem chứng minh tam giác AMC = tam giác EMB (c.g.c)=> AC = EB và góc CAM = góc BEM mà 2 góc này ở vị trí so le trong nên AC//BEb) Chứng minh ba điểm I,M,K thẳng hàng.em chứng minh IC = BK, góc ACM = góc EBM( suy ra từ câu a)khi đó tam giác IMC = tam giác KMB (c.g.c)=> góc IMC = góc KMBkhi đó góc IMK = 180 độI, M, K thẳng hàng
16 tháng 11 2016

Má sao ko ai tick vậy

17 tháng 12 2017

A B C M E K I Câu trả lời mình gửi sau:

31 tháng 10 2021

k biết

 

29 tháng 11 2016

M A B C E I K H 1 2

a, Xét hai tam giác AMC và tam giác BME, ta có:

     AM=ME (giả thiết)

     góc BME= góc AMC (2 góc đối đỉnh)

     BM=MC (M là trung điểm của BC)

Suy ra: tam giác AMC= tam giác BME (c.g.c)

=> AC=BE (hai cạnh tương ứng) (ĐPCM)

=>góc MAC= góc MEB (2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong nên: AC//BE (ĐPCM)

b, Xét tam giác AMI và tam giác EMK, ta có:

KE=AI (giả thiết)

góc CAM= góc EMK(chứng minh trên)

AM=Me ( giả thiết)

Suy ra: tam giác AMI= tam giác EMK(c.g.c)

=> góc AMI= góc EMK (2 góc tương ứng)

Mà góc AMI+ góc IME= 180 độ (2 góc kề bù)

Do đó: góc IME+ góc EMK= 180 độ

Hay 3 điểm I,M,K thẳng hàng (ĐPCM)

c, Vì góc HME là góc ngoài của tam giác BME nên:

HME= MBE+ MEB

       = 50 độ+ 25 độ

       = 75 độ

Xét tam giác vuông có H1= 90 độ, ta có

HME+HEM= 90 độ

=> Hem= 90 độ- HME= 90 độ- 75 độ= 15 độ

Theo định lí tổng 3 góc trong tam giác BME, ta có:

BME+ MBE+ BEM= 180 độ

=> BME= 180 độ- MBE-BEM= 180 đọ- 50 đọ- 25 độ= 105 độ

Vậy HEM=15 độ

BME= 105 độ

25 tháng 3 2016

A B C M E H K I

a/

-Xét tam giác ACM và tam giác EBM, có:

   CM=MB (gt)

   góc AMC = góc EMB ( đối đỉnh )

   AM=ME ( gt)

=> tam giác ACM và tam giác EBM bằng nhau ( c.g.c )

=> AC=EB

- Theo chứng minh trên 

=> góc ACM = góc MBE ( hai góc so le trong )

=> AC song song BE.

b) ( câu này ko bik nhé)

c)

ta có góc BME = 180 -50-25

                       = 105 độ.

góc HEM = góc MHE - góc HME

                =90- 105 (??????)

Cậu xem lại đề nhé.

               

  

Bài 2

Bài làm

a) Xét tam giác ABM và tam giác DCM có:

BM = MC ( Do M là trung điểm BC )

^AMB = ^DMC ( hai góc đối )

MD = MA ( gt )

=> Tam giác ABM = tam giác DCM ( c.g.c )

b) Xét tam giác BHA và tam giác BHE có:

HE = HA ( Do H là trung điểm AE )

^BHA = ^BHE ( = 90o )

BH chung

=> Tam giác BHA = tam giác BHE ( c.g.c ) 

=> AB = BE

Mà tam giác ABM = tam giác DCM ( cmt )

=> AB = CD 

=> BE = CD ( đpcm )

Bài 3

Bài làm

a) Xét tam giác ABD và tam giác ACD có: 

AB = AB ( gt )

BD = DC ( Do M là trung điểm BC )

AD chung

=> Tam giác ABD = tam giác ACD ( c.c.c )

b) Xét tam giác BEC và tam giác MEA có:

AE = EC ( Do E kà trung điểm AC )

^BEC = ^MEA ( hai góc đối )

BE = EM ( gt )

=> Tam giác BEC = tam giác MEA ( c.g.c )

=> BC = AM

Mà BD = 1/2 . BC ( Do D là trung điểm BC )

hay BD = 1/2 . AM

Hay AM = 2.BD ( đpcm )

c) Vì tam giác ABD = tam giác ACD ( cmt )

=> ^ADB = ^ADC ( hai góc tương ứng )

Mà ^ADB + ^ADC = 180o ( hai góc kề bù )

=> ^ADB = ^ADC = 180o/2 = 90o 

=> AD vuông góc với BC                         (1)

Vì tam giác BEC = tam giác MEA ( cmt )

=> ^EBC = ^EMA ( hai góc tương ứng )

Mà hai góc này ở vị trí so le trong

=> AM // BC                              (2)

Từ (1) và (2) => AM vuông góc với AD 

=> ^MAD = 90o 

# Học tốt #