K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2018

b,

Theo định lý Py-ta-go ta có:

+) 

Trong Tam giác ABC vuông tại B

Ta có: 

AB^2+BC^2=AC^2

=> AC^2=100

=> AC = 10

4 tháng 7 2018

a,

Xét tam giác BAC và QEC có:

Góc ABC= Góc CQE

Góc C chung

Góc CQE= Góc CAB ( Vì Góc A + Góc B + Góc C = Góc CQE + Góc C + Góc QEC )

=> BAC đồng dạng với QEC

(đpcm)

30 tháng 3 2022

a,Xét tam giác BAC và QEC có:

Góc ABC= Góc CQE

Góc C chung

Góc CQE= Góc CAB ( Vì Góc A + Góc B + Góc C = Góc CQE + Góc C + Góc QEC )

=> BAC đồng dạng với QEC(g-g)(đpcm)

b,

Theo định lý Py-ta-go ta có:

 Trong Tam giác ABC vuông tại B

Ta có: 

AB^2+BC^2=AC^2

=> AC^2=100

=> AC = 10

8 tháng 5 2016

a/ Xét tg HBA và tg ABC, có:

góc BHA = góc BAC = 90 độ

góc B chung

Suyra: tg HBA đồng dạng với tg ABC (g-g)

b/ Ta có tg ABC vuông tại A:

\(BC^2=AC^2+AB^2\)

\(BC^2=8^2+6^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\)(cm)

Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)

\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)

\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)

hay AC=8(cm)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)

Vậy: AC=8cm; AD=3cm; CD=5cm

b) Xét ΔDHC vuông tại H và ΔABC vuông tại A có 

\(\widehat{C}\) chung

Do đó: ΔDHC\(\sim\)ΔABC(g-g)

a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

b: BC=căn 6^2+8^2=10cm 

AH=6*8/10=4,8cm

BH=6^2/10=3,6cm

CH=10-3,6=6,4cm

c: AM=BC/2=5cm

=>HM=1,4cm 

S HAM=1/2*1,4*4,8=3,36cm2