K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

13 tháng 5 2021

a). Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

         BD là cạnh chung

         Góc ABD = góc EBD (đường phân giác BD)

=> tam giác ABD=tam giác EBD (cạnh huyền-góc nhọn)

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

5 tháng 7 2016

Hình bạn tự vẽ nhé!!thanghoa

a). Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

         BD là cạnh chung

         Góc ABD = góc EBD (đường phân giác BD)

=> tam giác ABD=tam giác EBD (cạnh huyền-góc nhọn)

b). Gọi I là giao điểm của BD và AE.

Xét tam giác ABI và tam giác EBI có:

          AB=EB (tam giác ABD=tam giác EBD)

          Góc ABI=góc EBI (đường phân giác BD)

          BI là cạnh chung.

=> tam giác ABI=tam giác EBI (c.g.c)

=> AI=EI => I là trung điểm của AE. (1)

=> Góc BIA=góc BIE

Mà góc BIA+góc BIE=180 độ (hai góc kề bù)

=> góc BIA=góc BIE=90 độ.

=> BI vuông góc với AE (2).

Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AE

d). Xét tam giác ADF vuông tại A và tam giác EDC vuông tại E có:

                AD=ED (tam giác ABD = tam giác EBD)

                AF=CE (GT)

=> tam giác ADF=tam giác EDC (hai cạnh góc vuông)

=> Góc ADF = góc EDC 

Chúc bạn học tốt!

 

19 tháng 4 2017

cn ý : E,D,F thẳng hàng

giúp mk vs

5 tháng 5 2015

a. Xét tam giác ABD vuông tại A và tam giác BED vuông tại E có:
BD : Cạnh chung 
Góc ABD = góc DBE (BD phân giác)
=> Tam giác ABD = tam giác BED (cạnh huyền - góc nhọn) 
b. Ta có BA = BE (Tam giác = tam giác câu a) 
=> tam giác BAE cân tại B. 
Lại có BD là phân giác tam giác BAE => BD vừa là phân giác vừa là đường trung trực của đoạn AE.
c. Xét tam giác EDC vuông tại E:
DE < DC (Cạnh góc vuông nhỏ hơn cạnh huyền)
Mà DE = DA (Tam giác = tam giác câu a)
=> DA < DC. 
d. Xét tam giác ADF và tam giác EDC: 
DA = DE (tam giác = tam giác câu a)
DAF = DEC (=90 độ)
AF = EC (gt) 
=> Tam giác ADF = tam giác EDC (C.g.c)
=> ADF = EDC (góc tương ứng) 
Mặt khác : EDC + EDA = 180 độ .
Từ đó suy ra : EDA + ADF = 180 độ. 
Vậy E,D,F thẳng hàng.

27 tháng 4 2016

bài của mk k có câu b, nếu câu c đúg hết thiếu 2 góc tg ứng D1=D2 trừ mấy điểm nhỉ

a) Xét \(\Delta\)ABD và \(\Delta\)FBD có

BAD=BFD (=90 độ)

ABD=FBD (BD là tia pg của ABC)

BD là cạnh chung

Do đó \(\Delta\)ABD=\(\Delta\)FBD(chgn)

b)Ta có  \(\Delta\)ABD=\(\Delta\)FBD(cmt)

\(\Rightarrow\)AB=FB(2 cạnh t/ứ)

\(\Rightarrow\Delta ABFcântạiB\)

Xét \(\Delta\)ABF cân tại B có : BD là pg ABC hay BD là pg ABF

\(\Rightarrow\)BD đồng thời là đường trung trực của đoạn thẳng À

c)Vì \(\Delta\) DFC vuông tại F

\(\Rightarrow\)cạnh huyền DC là cạnh lớn nhất của \(\Delta\) DFC

\(\Rightarrow\)DC>FD

Mà AD=FD (vì \(\Delta\)ABD=\(\Delta\)FBD)

Nên AD<DC

d) Xét \(\Delta\)ADE và \(\Delta\)FDC có

          DAE=DFC(=90 độ)

          AE=CF(gt)

          AD=FD(cmt)

Do đó\(\Delta\)ADE=\(\Delta\)FDC(2 cạnh góc vuông)

         \(\Rightarrow\)ADE=FDC(2 góc t./ứ)

Mà ADE+EDC=180 độ

     CDF+EDC=180 độ

Hay EDF=180 độ

\(\Rightarrow\)E,D,F thẳng hàng

24 tháng 5 2021

a)xét ΔABD và ΔFED có:

\(\widehat{BAD}=\widehat{BFD}=90^o\)

BD là cạnh chung

\(\widehat{ABD}=\widehat{FBD}\)(BD là phân giác của \(\widehat{ABF}\))

⇒ΔABD=ΔFED(c.huyền.g.nhọn)

b)gọi I là giao điểm của AF và BD

xét ΔABI và ΔFBI có:

BF=AB(ΔABD=ΔFED)

BI là cạnh chung

\(\widehat{ABI}=\widehat{FBI}\)(BD là phân giác của \(\widehat{ABF}\))

⇒ΔABI=ΔFBI(c-g-c)

\(\widehat{BIA}=\widehat{BIF}\)(2 góc tương ứng)(1)

  

Mà \(\widehat{BIA}+\widehat{BIF}=180^o\)(2 góc kề bù)(2)

từ (1) và (2) ⇒\(\widehat{BIA}=\widehat{BIF}=\dfrac{180^o}{2}=90^o\)

vì ΔABI=ΔFBI⇒IA=IF

Do đó:BD là trung trực của AF(đ.p.cm)

c)xét ΔDCF có

DC là cạnh huyền

⇒DC>DF

Mà DF=AD

⇒DC>AD

d)Ta có:

AB=DF(ΔABD=ΔFED)

Mà AE=FC

⇒AB+AE=DF+FC

hay BE=DC

xét ΔBDC và ΔBDE có:

BE=DC(ch/m trên)

\(\widehat{EBD}=\widehat{CBD}\)(BD là phân giác của \(\widehat{EBC}\))

BD là cạnh chung

⇒ ΔBDC=ΔBDE(c-g-c)

\(\widehat{BDE}=\widehat{BDC}\)(2 góc tương ứng)

Mà \(\widehat{BDA}=\widehat{BDF}\)(ΔABD=ΔFED)

\(\widehat{BDE}-\widehat{BDA}=\widehat{BDC}-\widehat{BDF}\)

hay \(\widehat{ADE}=\widehat{FDC}\)(đ.p.cm)

ta có:\(\widehat{ADE}+\widehat{CDE}=180^o\)(2 góc kề bù)

Mà \(\widehat{ADE}=\widehat{FDC}\) ⇒\(\widehat{FDC}+\widehat{CDE}=180^o\) 

hay E,D,F thẳng hàng(đ.p.cm)

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>góc BED=90 độ

=>DE vuông góc CB

c: BA=BE

DA=DE
=>BD là trung trực của AE

d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc ADF+góc ADE=180 độ

=>F,D,E thẳng hàng

31 tháng 5 2015

Giải:

a/Xét 2 TG vuông ABD và TG EBD ,ta có :

BD chung

Góc ABD=góc EBC (gt)

=>TG ABD = TG EBD (ch-gn)

=>BA=BE(cặp cạnh tương ứng)

=>TG ABE cân tại B.

Vì BD là phân giác của TG cân ABE nên BD cũng là đường trung trực của TG ABE.(T/c của TG cân)

=> ĐPCM

b/Trong TG DBE : DE<BE (Theo hình vẽ và Hệ quả của quan hệ giữa cạnh và góc)

Mà  DE=DA( TG ABD=TG EBD)

=> DA<BE (1)

Trong TG DBC : BC= BE+EC 

Từ (1) và (2) suy ra AD<BC.

c/Xét 2 TG vuông FAD và CED,ta có:

Góc A = Góc E (=90 độ)

AF=EC(gt)

=>TG FAD=TG CED (gcv-gcv)

=> Góc FDA= góc CDE

Mà góc FDB+EDB = 180 độ (hai góc kề bù) nên góc ADE+ góc EDC = 180 độ ( 2 góc kề bù)

=>ĐPCM

Giải đúng rồi đó nha!!! **** Giúp tớ nha bạn!!!

 

6 tháng 5 2016

Cách 1: Giải theo phương pháp bậc tiểu học (của bạn Ác Quỷ)

Ta có 

Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)

      dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)

Vậy , suy ra AE/AD = 1/3

Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)

DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB

DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)

=> AE/AD = 1/3