Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai tg vuông AHB~AHC => AH/BH=CH/AH=AC/AB
nhưng AH=2HM ; BH=2HN -gt- nên AV/BH=..=AC/AB=HM / HN
do đo ta có hai tg vuông CHM & AHN cũng ~ với nhau ( ~ là đồng dạng)
suy ra góc ^HAN=^HCM<=> CM và AN là hai cạnh tương ứng của hai góc =mà cặp cạnh kia CH đã vuông góc vơi AH
hoặc MN//AB ta cứ cộng các góc(=) dồn lại cũng ra ^NCM+^MNC+^MNA=!V
\(\text{a) Xét tam giác AHC có:}\)
\(\text{M là trung điểm AH}\)
\(\text{N là trung điểm HC}\)
\(\text{Do đó: MN là đường trung bình của tam giác AHC}\)
\(\Rightarrow MN//AC\text{ và }MN=\frac{1}{2}.AC\)
k dùng tính chất đường trung bình nha bạn , bạn còn cách khác k ạ