Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:
BC2=AB2+AC2=62+82= 100 Suy ra: BC = 10 (cm)
Ta có sin góc B =AC/BC = 8/10-0.8
cos B= AB/BC=6/10=0.6
tgB =AC/BC=8/6=4/3
cotg B = AB/AC=6/8=3/4
Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:
(AB)^2 + (AC)^2 = (BC)^2
=>(6)^2 + (8)^2 =(BC)^2
=>100 = (BC)2 =>BC = 10
sinB = ac/bc=6/10=0,6
\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{3}{4}\approx\tan37^0\\ \Leftrightarrow\widehat{C}\approx37^0\)
Ta có
1 AH 2 = 1 AB 2 + 1 AC 2 ⇒ AH = 24cm tan B = A C A B = 40 30 ⇒ B ^ ≈ 53 0
a) Áp dụng HTL :
\(\left\{{}\begin{matrix}AH^2=BH.HC\Rightarrow AH=\sqrt{1,8.3,2}=2,4\left(cm\right)\\AB^2=BH.BC\Rightarrow AB=\sqrt{1,8\left(1,8+3,2\right)}=3\left(cm\right)\\AC^2=HC.BC\Rightarrow AC=\sqrt{3,2\left(1,8+3,2\right)}=4\left(cm\right)\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\Rightarrow\widehat{B}\approx53^0\\tanC=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\widehat{C}\approx37^0\end{matrix}\right.\)
Lời giải:
$\tan B=\frac{AC}{AB}=\frac{8}{6}=\frac{4}{3}$
$\Rightarrow \widehat{B}=53^0$
$\widehat{C}=90^0-\widehat{B}=90^0-53^0=37^0$
làm sao suy ra được từ 4/3 mà góc b =53 độ vậy ạ