Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm của AH và BE là I.
Xét \(\Delta\)ABE có: ^BAE = 900; AB=AE => \(\Delta\)ABE vuông cân tại A
Ta có: M là trung điểm BE => AM vuông góc BE => ^AMI = 900
Xét \(\Delta\)AIM và \(\Delta\)BIH: ^AMI = ^BHI (=900); ^AIM = ^BIH (Đối đỉnh)
=> \(\Delta\)AIM ~ \(\Delta\)BIH (g.g) => \(\frac{IM}{IH}=\frac{IA}{IB}\Rightarrow\frac{IM}{IA}=\frac{IH}{IB}\)
Xét \(\Delta\)HIM và \(\Delta\)BIA : \(\frac{IM}{IA}=\frac{IH}{IB}\); ^HIM = ^BIA (Đối đỉnh) => \(\Delta\)HIM ~ \(\Delta\)BIA (c.g.c)
=> ^MHI = ^ABI. Mà ^ABI = ^ABE = 450 (Do \(\Delta\)ABE vuông cân tại A) => ^MHI = 450
Hay ^AHM = 450. Lại có: ^AHC = 900 => ^AHC = 2.^AHM => HM là phân giác ^AHC (đpcm).
Kẻ \(EI\perp AH,EK\perp BC\)
C/m EIHK là hình chữ nhật để \(EI=HK\)
Ta có: \(AM=KM\left(=\frac{1}{2}BE\right)\)
\(\Delta AHB=\Delta EIA\left(ch-gn\right)\Rightarrow AH=EI\)
\(\Delta AHM=\Delta KHM\left(c.c.c\right)\Rightarrow\widehat{AHM}=\widehat{KHM}\)
Mà tia HM nằm giữa 2 tia HA, HC nên HM là tia phân giác của \(\widehat{AHC}\)
Mình chỉ gạch ý thôi. Mong bạn hiểu cách làm bài. Chúc bạn học tốt.
\(\Delta ABC\)vuông tại A, AH là đường cao=> \(AB^2=BH.BC\)(1)
Ta có : AB=AE=> \(\Delta ABE\)vuông cân tại A; có AM là đường trung truyến=> AM là đường cao và \(\widehat{AEM}=45^o\)
\(\Delta ABE\)vuông cân tại A có AM là đường cao=> \(AB^2=BM.BE\)(2)
Từ (1) và (2)=> BH.BC=BM.BE=> \(\frac{BH}{BM}=\frac{BE}{BC}\)
Ta có: \(\frac{BH}{BM}=\frac{BE}{BC}\); \(\widehat{EBC}\)chung=> \(\Delta BHM~\Delta BEC\)(C-G-C)=>\(\widehat{BHM}=\widehat{BEC}\)
Ta có:\(\widehat{BHM}=\widehat{BEC}\)=> \(180^o-\widehat{BHM}=180^o-\widehat{BEC}\)<=>\(\widehat{MHC}=\widehat{AEM}=45^o\)(3)
Lại có : \(\widehat{AHM}=90^o-\widehat{MHC}=90^o-45^o=45^o\)(4)
Từ (3),(4)=> \(\widehat{MHC}\)=\(\widehat{AHM}\)=> HM là tia phân giác góc AHC.
(Chúc bạn học tốt !)