K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2021

tui mới lớp 3 thôi

9 tháng 4 2021
Trời ơi má ơi toán lớp 9 đó mọi người
3 tháng 12 2015

cậu vẽ hình ra đi, tớ giải

5 tháng 9 2015

Tam giác MBH nội tiếp đường tròn tâm I đường kính BH 

=> Tam giác MHB vuông tại M => MH vg AB => AMH = 90 độ 

Tam giác HNC nội tiếp đường tròn tâm O đk HC => Tam giác NHC vuông tại N 

=> ANH = 90 độ 

TG NAMH có ANH = HMA = MAN = 90 độ 

=> NAMH là HCN . Gọi MN giao AH tại O => OM = OH ; ON = OH ( tính chất HCN)

Tam giác BMH vuông tại M có MI là trung tuyến => MI = IH = 1/2 BH => Tam giác IMH cân tại I 

=> IMH = IHM (1)

Tam giác OMH có OM = OH => tam giác OMH cân tại O => OMH = OHM (2)

Từ (1) và (2) => IMH + OMH = IHM + OHM => OMI = IHO = 90 độ 

=> MN vg IM  

=> MN là tiếp tuyến đường tròn tâm I (*)

CM tương tự MN vg NK => MN là tiếp tuyến đường tròn tâm K (**)

Từ (*) và(**) => MN là tiếp tuyến chung của đường tròn tâm I và K  

 

a: Gọi M là trung điểm của CD

=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm

=>MD=ME

=>ΔMDE cân tại M

=>góc MED=góc MDE

Xét ΔABD có 

AH vừa là đường cao, vừa là đường trung tuyến

nên ΔABD cân tại A

=>AH là phân giác của góc BAD

=>góc BAH=góc DAH

Xét tứ giác AHDE có

góc AHD+góc AED=180 độ

nên AHDE là tứ giác nội tiếp

=>góc DAH=góc DEH

=>góc DEH=góc BAH=góc C

=>góc MEH=góc C+góc CDE=90 độ

=>HE là tiếp tuyến của (M)

b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)

CD=BC-2x64/17=161/17(cm)

EM=161/17:2=161/34(cm)

MH=MD+DH=BC/2=8,5cm

=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)