K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: XétΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔBAD=ΔBED

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: DF=DC

hay ΔDFC cân tại D

b: Ta có: DE=DA

mà DA<DF

nên DE<DF

6 tháng 8 2020

A B C D E F

A) XÉT \(\Delta ABC\)VUÔNG TẠI A

\(\Rightarrow BC^2=AB^2+AC^2\left(PYTAGO\right)\)

THAY \(10^2=6^2+AC^2\)

         \(100=36+AC^2\)

\(\Rightarrow AC^2=100-36\)

\(\Rightarrow AC^2=64\)

\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)

ta có \(AD+DC=AC\)

\(\Leftrightarrow3+DC=8\)

\(\Leftrightarrow DC=8-3=5\left(cm\right)\)

B) XÉT \(\Delta ABD\)VÀ \(\Delta EBD\)

\(\widehat{BAD}=\widehat{BED}=90^o\)

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

BD LÀ CẠNH CHUNG 

=>\(\Delta ABD\)=\(\Delta EBD\)( CH-GN)

\(\Rightarrow BA=BE\)(HAI CẠNH TƯƠNG ỨNG )

=> \(\Delta BAE\)LÀ TAM GIÁC CÂN TẠI B

c)  XÉT \(\Delta ADF\)VUÔNG TẠI A

\(\Rightarrow DF>AD\left(1\right)\)( CẠNH HUYỀN LỚN NHẤT )

VÌ \(\Delta ABD\)=\(\Delta EBD\)(CMT)

=> \(AD=ED\left(2\right)\)(HAI CẠNH TƯƠNG ỨNG )

TỪ (1) VÀ (2) 

\(\Rightarrow DF>ED\)

24 tháng 6 2021

undefined

undefined

 

23 tháng 6 2020

a, tam giác ABC vuông tại  A (gt)

=> AB^2 + AC^2 = BC^2 (đl Pytago)

có AB = 6; BC = 10 

=> AC = 8 do AC > 0

b, xét tam giác DAB và tam giác DEB có : BD chung

^DAB = ^DEB = 90 

^ABD = ^EBD do BD là phân giác của ^ABC (gt)

=> tg DAB = tg DEB (ch-gn)

c, tg DAB = tg DEB (câu b)

=> DA = DE (Đn)

xét tg DAF và tg DEC có : ^DAF = ^DEC = 90

^ADF = ^EDC (Đối đỉnh)

=> tg DAF = tg DEC (cgv-gnk)

=> DF = DC (đn)

có DC > DE 

=> DE < DF 

+ xét tg CFB có : CA _|_ FB; FE _|_ BC  mà FE cắt CA tại D

=> BD _|_ CF

24 tháng 6 2020

cảm ơn bạn

31 tháng 3 2018

Tg ABD =tg EBD ( cm trên) •> AD=DE( 2 cạnh tương ứng) (1)

Tg ADF vg tại A=> Góc A lớn nhất=> FD lớn nhất( Qh giữa góc và cạnh đối diện trong 1 tam giác)=> AD<FD(2)

Từ 1 và 2 => ED<FD

31 tháng 3 2018

a) Tam giác ABC vuông tại A => AB2+AC2=BC2 ( theo định lý Pitago)

​​=> 62+Ac2=10=>AC2=100-36=64=> AC= 8

Vì D nằm trên AC=> AD+DC= AC=> 3+DC=8=> DC=5(cm)

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

BE=BA

góc FBE chung

=>ΔBEF=ΔBAC

=>BF=BC

c: ΔBFC cân tại B

mà BD là phân giác

nên BD vuông góc CF

=>BD//AH

=>AH vuông góc AE

a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=EB

b: AB<AC

=>góc C<góc B

=>góc C<45 độ

=>gócEDC>45 độ

=>góc C<góc EDC

=>ED<EC

=>DA<AM<DM