K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có 

ΔABC nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

Xét ΔACB vuông tại C có 

\(\sin\widehat{CBA}=\dfrac{CA}{AB}=\dfrac{1}{2}\)

=>CA=R

hay \(CB=R\sqrt{3}\)

b: Xét ΔMAB vuông tại A có AC là đường cao

nên \(BC\cdot MC=AC^2\left(1\right)\)

Xét ΔACB vuông tại C có CH là đường cao

nên \(AH\cdot AB=AC^2\left(2\right)\)

Từ (1) và (2) suy ra \(MC\cdot BC=AH\cdot AB\)