K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC có 

BE là đường cao ứng với cạnh AC(gt)

CD là đường cao ứng với cạnh AB(gt)

BE cắt CD tại H(gt)

Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)

Suy ra: AH\(\perp\)BC

mà HM\(\perp\)BC(gt)

và AH,HM có điểm chung là H

nên A,H,M thẳng hàng(đpcm)

b) Xét ΔBMH vuông tại M và ΔBEC vuông tại E có 

\(\widehat{EBC}\) chung

Do đó: ΔBMH\(\sim\)ΔBEC(g-g)

Suy ra: \(\dfrac{BM}{BE}=\dfrac{BH}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(BE\cdot BH=BM\cdot BC\)

Xét ΔCMH vuông tại M và ΔCDB vuông tại D có

\(\widehat{DCB}\) chung

Do đó: ΔCMH\(\sim\)ΔCDB(g-g)

Suy ra: \(\dfrac{CM}{CD}=\dfrac{CH}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(CH\cdot CD=CM\cdot CB\)

Ta có: \(BE\cdot BH+CM\cdot CD\)

\(=BM\cdot BC+CM\cdot BC\)

\(=BC^2\)(đpcm)