Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét △ABC vuông tại A có:
BC² = AC² + AB² (ĐL Pytago)
BC² = 8² + 6²
BC² = 100
BC = 10 cm
Vậy BC = 10 cm
b) Xét △ABD và △EBD có:
góc BAD = góc BED (=90°)
BD chung
góc ABD = góc EBD (BD là tia p/g của góc ABC)
=> △ABD = △EBD (ch-gn)
c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á
C1 :
a) Xét tam giác ABC có BC2=AB2+AC2( Định lý Py-ta-go)
Thay số:BC2=62+82
BC2=36+64=100
=>BC=10(cm)
b) Vì BI là phân giác => góc ABI= góc HBI= góc ABC / 2
Xét tam giác ABI vuông tại A và tam giác HBI vuông tại H có:
Bi chung, góc ABI= góc HBI ( cmt)
=> tam giác ABI= tam giác HBI (cạnh huyền - góc nhọn)
c)Gọi giao của AH và BI là K
Vì tam giác ABI=tam giác HBI (cmt)=> AB=HB( 2 cạnh tương ứng)
Xét tam giác AKB và tam giác HKB có:
AB=HB (cmt)
góc ABK=góc HBK(cmt)
BK chung
=. tam giác AKB= tam giác HKB ( c.g.c)
=> KB=KH ( 2 cạnh tương ứng)
=> K là trung điểm của BH (1)
Vì AB=HB (cmt) => tam giác ABH cân tại B=> AH là đường cao của tam giác ABH=> AH vuông góc với BK hay AH vuông góc với BI(2)
Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AH
C2 :
a)ÁP DỤNG ĐỊNH LÝ PYTAGO THUẬN TRÒG TAM GIÁC ABC (BAC = 90 ĐỘ ) CÓ :
AB2 +AC2=BC2
=>52+72=BC2
=>BC2=25+49=74
HAY BC = CĂN BẬC HAI 74 =8.6 (CM)
b)XÉT HAI TAM GIÁC ABE (BAE = 90 ĐỘ ) VÀ TAM GIÁC DBE (BDE=90 ĐỘ ) CÓ :
AB=BD (GT)
BE LÀ CẠNH HUYỀN CHUNG
=>TAM GIÁC ABE = TAM GIÁC DBE (CẠNH HUYỀN _CẠNH GÓC VUÔNG )
C ) DO TAM GIÁC ABE = TAM GIÁC DBE (CÂU B )
=>AE=DE (2 CẠNH TƯƠNG ỨNG )
XÉT HAI TAM GIÁC AEF (EAF = 90 ĐỘ ) VÀ TAM GIÁC DEC (EDC = 90 ĐỘ ) CÓ :
E1 =E2
AE=DE (CMT)
=>TAM GIÁC AEF=TAM GIÁC DEC (CGV _ GÓC NHỌN KỀ )
=>ÈF=EC (2 CẠNH TƯƠNG ỨNG)
a: BC=10cm
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
c: ta có: ΔABD=ΔEBD
nên BA=BE
hay ΔBAE cân tại B
d: Ta có: ΔABD=ΔEBD
nên DA=DE
hay D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
nên B nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
b: XétΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
c: ta có: ΔABD=ΔEBD
nên BA=BE và DA=DE
=>BD là đường trung trực của AE
hay BD\(\perp\)AE
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
=>DE<DF
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>DF=DC
d: BA+AF=BF
BE+EC=BC
mà BA=BE và AF=EC
nên BF=BC
mà DF=DC
nên BD là trung trực của CF
a: BC=15cm
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
c: Ta có: DA=DE
mà DE<DC
nên DA<DC
d: Xét ΔBEI vuông tại E và ΔBAC vuông tại A có
BE=BA
\(\widehat{EBI}\) chung
DO đó: ΔBEI=ΔBAC
Suy ra: BI=BC
hay ΔBIC cân tại B