Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(bạn tự vẽ hình)
Bài 1: Xét tam giác ABC vuông có 2 đường phân giác BE, CF cắt nhau tại K
=> K là tâm đường tròn nội tiếp tam giác
=> AK là phân giác góc BAC
Đợi xíu mình giải cho. Thích bài nào giải bài đó nhé tại nhiều quá @@
\(\Delta\)ABC cân, mà AF là đường cao
=> AF là đường trung tuyến ( định lý )
=> BF=CF
Xét \(\Delta\) BFH và \(\Delta\) CFH có: \(\left\{{}\begin{matrix}BF=CF\\F_1=F_2=90^o\\FH\end{matrix}\right.\)
=> \(\Delta\) BFH = \(\Delta\) CFH (c.g.c)
=> BH=CH ( 2 cạnh tương ứng )
=> \(\Delta\) BHC là tam giác cân ( định lý )
a, xét tg BEM và tg CFM có : ^CFM = ^BEM = 90
^ABC = ^ACCB do tg ABC cân tại A (gt)
CM = BM do M là trung điểm của BC (gt)
=> tg BEM = tg CFM (ch-gn) (1)
b, (1) => CF = BE (đn)
AB = AC do tg ABC cân tại A (gt)
CF + AF = AC
BE + AE = AB
=> AF = AE
Bài giải
a, Xét 2 tam giác vuông BME và CMF có :
MB = MC ( AM là đường trung tuyến ) : cạnh huyền
\(\widehat{B}=\widehat{C}\) ( tam giác ABC cân ) : góc nhọn
\(\Rightarrow\text{ }\Delta BME =\Delta CMF ( ch-gn ) \) ( 1 )
b, Từ ( 1 ) => BE = CF ( 2 cạnh tương ứng )
Mà AB = AE + BE
AC = AF + CF
Mà BE = CF => AE = AF
c, Ta có :
\(AG=BG=\frac{2}{3}AM\text{ }\Rightarrow\text{ }\frac{AG+BG}{2}=\frac{\frac{2}{3}AM+\frac{2}{3}AM}{2}=\frac{\frac{4}{3}AM}{2}=\frac{3}{2}AM>BG\)
\(\Rightarrow\text{ }ĐPCM\)