K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2021

\(a)\)

Vì \(AM\)là đường trung tuyến

\(\rightarrow BM=CM\)

Xét \(\Delta AMB\)và \(\Delta DMC\)ta có:

\(\hept{\begin{cases}BM=CM\left(cmt\right)\\MD=MA\left(GT\right)\\\widehat{BMA}=\widehat{DMC}\end{cases}}\)

\(\rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)

\(b)\)

Vì \(\Delta AMB=\Delta DMC\left(cmt\right)\)

\(\rightarrow\hept{\begin{cases}\widehat{ABM}=\widehat{MCD}\\AB=CD\end{cases}}\)

Mà hai góc này ở vị trí so le trong

\(\rightarrow AB//CD\)

Mà \(AB\perp AC\)( vì \(\Delta ABC\)vuông tại \(A\))

\(\rightarrow CD\perp AC\)

Xét \(\Delta ABC\)và \(DCM\)ta có:

\(\hept{\begin{cases}AB=CD\left(cmt\right)\left(cmt\right)\\ACchung\\\widehat{BAC}=\widehat{DCA}=90^o\end{cases}}\)

\(\rightarrow\Delta ABC=\Delta DMC\left(c.g.c\right)\)

\(c)\)

Ta có: \(AB=DC=6cm\)

Xét \(\Delta DCA\)vuông tại \(C\)ta có:

\(DC^2+AC^2=AD^2\)

\(\rightarrow AD^2=6^2+8^2\)

\(\rightarrow AD^2=10^2\)

\(\rightarrow AD=10cm\)

Mà \(MD=MA\)

\(\rightarrow M\)là trung điểm của \(AD\)

\(\rightarrow AM=\frac{1}{2}AD=\frac{1}{2}.10=5cm\)

\(d)\)

Giả sử: \(AM< \frac{AB+AC}{2}\)

Ta có: \(\frac{AB+AC}{2}=\frac{6+8}{2}=\frac{14}{2}=7cm\)

Mà \(AM=5cm\)

\(\rightarrow5cm< 7cm\)

\(\rightarrow AM< \frac{AB+AC}{2}\)

M C A B D

14 tháng 9 2018

a: Xet ΔMAB và ΔMDC có

MA=MD

góc AMB=góc DMC

MB=MC

=>ΔMAB=ΔMDC

b: ΔMAB=ΔMDC

=>góc MAB=góc MDC

=>AB//CD

c: Xét tứ giác ABCE có

N là trung điểm chung của AC và BE

=>ABCE là hình bình hành

=>AB//EC

=>C,E,D thẳng hàng

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//DC

c: Ta có: ΔACB cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

14 tháng 12 2021

\(a,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAB=\Delta MDC\left(c.g.c\right)\\ b,\Delta MAB=\Delta MDC\\ \Rightarrow\widehat{MCD}=\widehat{MBA}\)

Mà 2 góc này ở vị trí so le trong nên \(AB\text{//}CD\)

\(c,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMC}=\widehat{BMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAC=\Delta MDB\left(c.g.c\right)\\ \Rightarrow AC=BD;\widehat{MCA}=\widehat{MBD}\)

Mà 2 góc này ở vị trí slt nên \(AC\text{//}BD\Rightarrow BD\bot AB\)

\(\left\{{}\begin{matrix}AC=BD\\\widehat{BAC}=\widehat{ABD}=90^0\\AB\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABC=\Delta CDA\left(c.g.c\right)\\ \Rightarrow BC=AD\\ d,MF\bot BD\Rightarrow MF\text{//}AB\\ BC=AD\\ \Rightarrow AM=\dfrac{1}{2}AD=\dfrac{1}{2}BC=BM=MC\\ \Rightarrow\Delta AME\text{ cân tại }E\)

Mà ME là trung tuyến nên cũng là đường cao

Do đó \(ME\bot AC\Rightarrow ME\text{//}AB\)

Mà \(MF\text{//}AB\Rightarrow ME\equiv MF\)

Vậy M,E,F thẳng hàng