K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

Tham khảo tại link này nhé !

https://olm.vn/hoi-dap/detail/219404925266.html 

30 tháng 4 2019

a)Xét\(\Delta ABE\)\(\Delta DBE\)có:

\(AB=DB\left(GT\right)\)

\(\widehat{BAE}=\widehat{BDE}\left(=90^o\right)\)

\(BE\)là cạnh chung

Do đó:\(\Delta ABE=\Delta DBE\)(cạnh huyền-cạnh gv)

b)Vì\(\Delta ABE=\Delta DBE\)(cm câu a) nên\(\widehat{ABE}=\widehat{DBE}\)(2 cạnh t/ứ)

Gọi\(K\)là giao điểm của\(AD\)\(BE\)

Xét\(\Delta ABK\)\(\Delta DBK\)có:

\(AB=DB\left(GT\right)\)

\(\widehat{ABK}=\widehat{DBK}\left(cmt\right)\)

\(BK\)là cạnh chung

Do đó:\(\Delta ABK=\Delta DBK\)(c-g-c)

\(\Rightarrow\widehat{AKB}=\widehat{DKB}\)(2 góc t/ứ)

\(AK=DK\)(2 cạnh t/ứ)

Ta có:\(\widehat{AKB}+\widehat{DKB}=180^o\)(2 góc KB)

\(\widehat{AKB}=\widehat{DKB}\left(cmt\right)\)

\(\Rightarrow\widehat{AKB}=\widehat{DKB}=\frac{180^o}{2}=90^o\)

\(\Rightarrow BK\perp AD\)

mà \(K\)là trung điểm của\(AD\)do\(AK=DK\left(cmt\right)\)

\(\Rightarrow BK\)là đường trung trực của\(AD\)

c)Xét\(\Delta ABC\)\(\Delta DBF\)có:

\(\widehat{B}\)là góc chung

\(AB=DB\left(GT\right)\)

\(\widehat{BAC}=\widehat{BDF}\left(=90^o\right)\)

Do đó:\(\Delta ABC=\Delta DBF\)(g-c-g)

\(\Rightarrow BC=BF\)(2 cạnh t/ứ)

Xét\(\Delta BCF\)có:\(BC=BF\left(cmt\right)\)

Do đó:\(\Delta BCF\)cân tại\(A\)(Định nghĩa\(\Delta\)cân)

26 tháng 4 2019

a) ΔABE = ΔDBE.

Xét hai tam giác vuông ABE và DBE có:

BA = BD (gt)

BE là cạnh chung

Do đó: ΔABE = ΔDBE (cạnh huyền - cạnh góc vuông)

b) BE là đường trung trực của AD.

Gọi giao điểm của AD và BE là I . 

Vì ΔABE = ΔDBE (câu a)  ⇒ ∠B1 = ∠B2 ( hai góc tương ứng)

Xét ΔABI và ΔDBI có: 

BA = BD (gt)

∠B1 = ∠B2 (cmt)

BI : cạnh chung.

Do đó: ΔABI = ΔDBI (c - g - c)

⇒ AI = DI (hai cạnh tương ứng) (1)

∠I1 = ∠I(hai góc tương ứng) mà ∠I1 + ∠I2 = 180°

⇒ ∠I1 = ∠I= 180° : 2 = 90° 

Hay BE ⊥ AD (2)

Từ (1) và (2) suy ra: BE là đường trung trực của AD

 c) ΔBCF cân.

Vì ΔABE = ΔDBE (câu a) ⇒ AE = DE (hai cạnh tương ứng)

Xét hai tam giác vuông AEF và DEC có:

AE = DE (cmt)

∠E1 = ∠E2 (đối đỉnh)

Do đó: ΔAEF = ΔDEC (cạnh góc vuông - góc nhọn kề) 

⇒ AF = CD (hai cạnh tương ứng) 

Ta có: BF = AB + AF và BC = BD + DC (3)

Mà: BA = BD (gt) và AF = DC (cmt)  (4)

Từ (3) và (4) suy ra: BF = BC 

Hay ΔBFC cân tại B.

d) B, E, H thẳng hàng.

Vì ∠B1 = ∠B2 (câu b) 

Nên BE là phân giác của góc B (5)

Xét ΔFBH và ΔCBH có:

BF = BC (câu c)

FH = HC (trung điểm H của BC)

BH : chung

Do đó: ΔFBH =  ΔCBH (c - c - c)

⇒ ∠FBH = ∠CBH (hai góc tương ứng)

⇒ BH là phân giác của góc B (6)

Từ (5) và (6) suy ra: B, E, H thẳng hàng.

26 tháng 4 2019

A B C D I H F E 1 2 1 1 2 2

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

BA=BD

=>ΔBAE=ΔBDE

=>ED=EA

mà EA<EF

nên ED<EF

b: Xét ΔEAF vuông tại A và ΔEDC vuông tại D có

EA=ED
góc AEF=góc DEC

=>ΔEAF=ΔEDC

=>EF=EC

=>ΔEFC cân tại E

c: BA+AF=BF

BD+DC=BC

mà BA=BD và AF=DC

nên BF=BC

=>ΔBFC cân tại B

mà BM là trung tuyến

nên BM là phân giác của góc FBC

=>B,E,M thẳng hàng

AH
Akai Haruma
Giáo viên
1 tháng 5 2022

Lời giải:
a. Xét tam giác $ABE$ và $DBE$ có:
$AB=DB$ (gt)

$BE$ chung

$\widehat{BAE}=\widehat{BDE}=90^0$

$\Rightarrow \triangle ABE=\triangle DBE$ (ch-cgv)

b. 

Vì tam giác bằng nhau phần a suy ra $\widehat{ABE}=\widehat{DBE}$

Do đó $BE$ là phân giác $\widehat{ABD}$

Mà $ABD$ là tam giác cân tại $B$ nên phân giác $BE$ đồng thời là trung trực 

$\Rightarrow BE$ là trung trực của $AD$

-----

Hoặc bạn có thể chỉ ra:
$BA=BD$
$EA=ED$ 

$\Rightarrow BE$ là trung trực $AD$

c.

Xét tam giác $AEF$ và $DEC$ có:
$\widehat{AEF}=\widehat{DEC}$ (đối đỉnh) 

$AE=ED$ (cmt) 

$\widehat{FAE}=\widehat{CDE}=90^0$

$\Rightarrow \triangle AEF=\triangle DEC$ (g.c.g)

$\Rightarrow AF=DC$

Ta có:

$BA=BD$

$AF=DC$

$\Rightarrow BA+AF=BD+DC$ hay $BF=BC$ nên $BCF$ cân tại $B$

AH
Akai Haruma
Giáo viên
1 tháng 5 2022

Hình vẽ:

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

3 tháng 5 2020

A B C D F E

a) Vì tam giác BAC vuông tại A 

=> AB^2 + AC^2 = BC^2 ( đl pytago )

=> BC^2 = 5^2 + 7^2 = 74

=> BC = căn bậc 2 của 74

b) 

 Xét tam giác ABE; tam giác DBE có :

AB = DB ( gt)

góc ABE = góc DBE ( gt)

BE chung

=> tam giác ABE = tam giác DBE (c.g.c) - đpcm

c)

Vì tam giác ABE = tam giác DBE (câu b)

=> AE = DE

Xét tg AEF ⊥ tại A; tg DEC ⊥ tại D:

AE = DE (c/m trên)

g AEF = g DEC (đối đỉnh)

=> tg AEF = tg DEC (cgv - gn) - đpcm

=> EF = EC 

d)

Do tam giác AEF = tam giác DEC (câu c)

=> AE = DE

=> E ∈ đường trung trực của AD (1)

Lại do AB = BD (gt)

=> B ∈ đường trung trực của AD (2)

Từ (1) và (2) => BE là đường trung trực của AD. - đpcm