K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

â: Xét ΔBAI vuông tại A và ΔBEI vuông tại E có

BI chung

góc ABI=góc EBI

=>ΔBAI=ΔBEI

=>IA=IE

mà IE<IC

nên IA<IC

b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

BE=BA

góc B chung

=>ΔBEF=ΔBAC

=>BF=BC

mà BI là phân giác

nên BI vuông góc CF

25 tháng 4 2023

Làm thế nào để IE<IC vậy

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

BE=BA

góc FBE chung

=>ΔBEF=ΔBAC

=>BF=BC

c: ΔBFC cân tại B

mà BD là phân giác

nên BD vuông góc CF

=>BD//AH

=>AH vuông góc AE

23 tháng 3 2020

a) Xét \(\Delta BAI\)và \(\Delta BAC\)có :

AB : cạnh chung

\(\widehat{BAI}=\widehat{BAC}\left(=90^0\right)\)

AC = AI ( gt )

\(\Rightarrow\Delta BAI=\Delta BAC\left(c-g-c\right)\)

\(\Rightarrow\widehat{ABI}=\widehat{ABC}\)( do 2 tam giác = nhau )

Mà \(\widehat{ABI}+\widehat{BAH}=90^0\)( tổng 3 góc = 1800 mà có 1 góc = 900 ( do AH\(\perp\)BI ) nên tổng 2 góc còn lại = 900 )

\(\Rightarrow\widehat{ABC}+\widehat{BAK}=90^0\)

\(\Rightarrow\widehat{BAH}=\widehat{BAK}\)

=> BA là đường phân giác của \(\widehat{HBK}\)

b) Ta có tam giác vuông ABK = CBA ( ch-gn ) => AB2 = BK . BC (1)

Ta có tam giác vuông ABH = IBA ( ch-gn ) => AB2 = BH . BI (2)

Từ (1) và (2) => BK . BC = BH . BI => HK // IC ( theo định lí Ta-let )

c) Gọi E là giao điểm của HK và BA

Có tam giác BHK cân ( BE là đường cao, phân giác ) => BH = BK

Ta có BA là đường trung trực của HK => HA = KA

Có tam giác vuông BHN = BKM ( gn-cgv ) => HN = KM

=> HA + AN = AK + AM => AN = AM => Tam giác AMN cân tại A

a:Xet ΔBAI vuông tại A và ΔBDI vuông tại D có

BI chung

góc ABI=góc DBI

=>ΔBAI=ΔBDI

b: Xét ΔIAE vuông tại A và ΔIDC vuông tại D có

IA=ID

góc AIE=góc DIC

=>ΔIAE=ΔIDC

=>IE=IC

c: IA=ID

mà ID<IC

nên IA<IC

a: Xet ΔBAI vuông tại A và ΔBEI vuông tại E có

BI chung

góc ABI=góc EBI

=>ΔBAI=ΔBEI

=>AI=IE

mà IE<IC

nên AI<IC

b: Xét ΔBKC có

KE,CA là đường cao

KE cắt CA tại I

=>I là trực tâm

=>BI vuông góc CF

a) Xét ΔABI vuông tại A và ΔEBI vuông tại E có

BI chung

\(\widehat{ABI}=\widehat{EBI}\)(BI là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABI=ΔEBI(Cạnh huyền-góc nhọn)

Suy ra: AI=EI(hai cạnh tương ứng)

a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=EB

b: AB<AC

=>góc C<góc B

=>góc C<45 độ

=>gócEDC>45 độ

=>góc C<góc EDC

=>ED<EC

=>DA<AM<DM

 

a: Xét ΔABE vuông tại A và ΔIBE vuông tại I có

BE chung

\(\widehat{ABE}=\widehat{IBE}\)

Do đó:ΔABE=ΔIBE

b: Xét ΔAEM vuông tại A và ΔIEC vuông tại I có

EA=EI

\(\widehat{AEM}=\widehat{IEC}\)

Do đó;ΔAEM=ΔIEC

Suy ra: EM=EC

hay ΔEMC cân tại E

c: Xét ΔBMC có BA/AM=BI/IC

nên AI//MC

4 tháng 3 2022

chúc mừng cj lên đc đại tướng