Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác ABD vuông tại A và tam giác BED vuông tại E có:
BD : Cạnh chung
Góc ABD = góc DBE (BD phân giác)
=> Tam giác ABD = tam giác BED (cạnh huyền - góc nhọn)
b. Ta có BA = BE (Tam giác = tam giác câu a)
=> tam giác BAE cân tại B.
Lại có BD là phân giác tam giác BAE => BD vừa là phân giác vừa là đường trung trực của đoạn AE.
c. Xét tam giác EDC vuông tại E:
DE < DC (Cạnh góc vuông nhỏ hơn cạnh huyền)
Mà DE = DA (Tam giác = tam giác câu a)
=> DA < DC.
d. Xét tam giác ADF và tam giác EDC:
DA = DE (tam giác = tam giác câu a)
DAF = DEC (=90 độ)
AF = EC (gt)
=> Tam giác ADF = tam giác EDC (C.g.c)
=> ADF = EDC (góc tương ứng)
Mặt khác : EDC + EDA = 180 độ .
Từ đó suy ra : EDA + ADF = 180 độ.
Vậy E,D,F thẳng hàng.
Cách 1: Giải theo phương pháp bậc tiểu học (của bạn Ác Quỷ)
Ta có
Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)
dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)
Vậy , suy ra AE/AD = 1/3
Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)
DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB
DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)
=> AE/AD = 1/3
xét tam giác BAD và tam giác FAD có :
AD chung
góc A1= góc A2 (AD là phân giác )
=>tam giác BAD= tam giác FAD (cạnh huyền -góc nhọn)
b) tam giác BAD=tam giác FAD(cmt)
=>BD=FD
Trong tam giác FDC vuông tại F
góc D +góc C+gócF=180độ
Mà F=90 độ=D+C=90 độ
=>F>C
=>CD>FD
mà FD=BC(cmt)
=>CD>BC
c) TỰ NGHĨ NHA
a) Xét 2 tam giác ABD và EBD vuông tại A và C có:
BD:cạnh chung
ABD=EBD( vì BD là tia phân giác)
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
\(\Rightarrow AB=BE\)(2 cạnh tương ứng)
b)\(\Rightarrow AD=DE\)
Mà DE <DC( vì cạnh góc vuông<cạnh huyền)
\(\Rightarrow AD< DC\left(dpcm\right)\)
c) Vì AD=DE và AK=KC(cmt)
\(\Rightarrow\Delta AKD=\Delta ECD\)(2 cạnh góc vuông)
\(\Rightarrow\widehat{ADK}=\widehat{EDC}\)( 2 góc tương ứng)
Mà ADE+EDC=180 độ
\(\Rightarrow KDA+ADE=180^0\)
\(\Rightarrow KDE=180^0\)
\(\Rightarrow K,D,E\)thẳng hàng
d) Gọi \(IM\perp AB;IN\perp AC\)
Xét tam giác ABC có M là trung điểm của AB và IM//AC
\(\Rightarrow I\)là trung điểm của BC ( theo tính chất đường trung bình trong tam giác)
Phần b là mà DE<DC vì cạnh góc vuông nhỏ hơn cạnh huyền nha bạn
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB