K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 10 2021

Lời giải:

Trên tia đối tia $MA$ lấy $D$ sao cho $MD=MA$

Dễ cm $\triangle BMA=\triangle CMD$ (c.g.c)

$\Rightarrow \widehat{MBA}=\widehat{MCD}$

Mà 2 góc này so le trong nên $BA\parallel CD$

$\Rightarrow CD\perp AC$ hay $\widehat{DCA}=90^0$

Cùng từ 2 tam giác bằng nhau trên suy ra $BA=CD$

Xét tam giác $BAC$ và $DCA$ có:

$BA=DC$

$\widehat{BAC}+\widehat{DCA}=90^0$

$AC$ chung

$\Rightarrow BC=DA$

Mà $DA=2AM$ nên $BC=2AM$

AH
Akai Haruma
Giáo viên
27 tháng 10 2021

Hình vẽ:

30 tháng 11 2021

a: Xét ΔABM và ΔACM có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔABM=ΔACM

a)

Sửa đề: ΔBIM=ΔCKM

Xét ΔBIM vuông tại I và ΔCKM vuông tại K có

BM=CM(M là trung điểm của BC)

\(\widehat{IBM}=\widehat{KCM}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBIM=ΔCKM(cạnh huyền-góc nhọn)

18 tháng 3 2021

Giải cả bài giúp  vs ạ

a) Xét ΔABM và ΔACM có 

AB=AC(ΔABC cân tại A)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

8 tháng 12 2021

A B C M

\(a,\) Xét \(\Delta ABM\) và \(\Delta ACM\) có:

\(AB=AC\) (giả thiết)

\(AM\) là cạnh chung

\(BM=CM\) (giả thiết)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

\(b,\) Vì \(\Delta ABM=\Delta ACM\) (chứng minh câu \(a\))

\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) (\(2\) góc tương ứng)

\(\Rightarrow AM\) là tia phân giác \(\widehat{BAC}\)

\(c,\) Vì \(\Delta ABC\) cân tại \(A\) (giả thiết)

Mà \(AM\) là tia phân giác \(\widehat{BAC}\) (chứng minh câu \(b\))

\(\Rightarrow AM\) là đường trung trực \(\Delta ABC\)

\(\Rightarrow AM\perp BC\) tại \(M\)

19 tháng 1 2017

Căng =))) Mà chỉ biết làm nếu có đường trung tuyến thôi âydaaa

Thôi để người khác làm nhé

19 tháng 1 2017

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!

mình ko biết xin lỗi bạn nha!