Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMAB và ΔMEC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔMAB=ΔMEC
b: ΔMAB=ΔMEC
=>góc MAB=góc MEC
=>AB//CE
c: Xét ΔMHA vuông tại H và ΔMKE vuông tại K có
MA=ME
góc HAM=góc KEA
=>ΔMHA=ΔMKE
=>MH=MK
=>M là trung điểm của HK
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB=DC
a) Xét tam giác MAB và tam giác MDC có:
MA=MD (gt)
MB=MC( M là trung điểm BC)
\(\widehat{AMB}=\widehat{DMC}\)( đối đỉnh)
=> Tam giác MAB = tam giác MDC
b)
Tam giác MAB = tam giác MDC => \(\widehat{BAM}=\widehat{CDM}\)
Mà hai góc này ở vị trí so le trong
=> AB//CD
c) Ta có AB vuông AC
mag CD // AB
=> CD vuông AC
=> góc ACD bằng 90 độ
a, Xét tam giác AMB và tam giác DMC có
AM = DM ; BM = MC ; ^AMB = ^DMC (đ.đ)
Vậy tam giác AMB = tam giác DMC (c.g.c)
=> ^ABM = ^DCM ( 2 góc tương ứng )
mà 2 góc này ở vị trí đồng vị
Vậy AB // CD