Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
a/ Áp dụng định lí Pytago vào tam giác vu6ong ABC ta được:
AB2=BC2-AC2=102-82=62
=> AB=6 cm.
b/ Xét tam giác ABI và tam giác DBI có:
BI chung
Góc IAB=IDB=90 độ
Góc IBA=IBD(phân giác IB)
=> Tam giác ABI=tam giác DBI(ch-gn)
c/ Gọi O là giao điểm AD và IB.
Vì tam giác ABI=tam giác DBI(câu b)
=> AB=BD(cạnh tương ứng)
Xét tam giác OBA và tam giác OBD có:
BO chung
Góc OBD=OBA(phân giác BI)
AB=BD(cmt)
=> Tam giác OBA=tam giác OBD(c-g-c)
=> OA=OD(cạnh tương ứng) và Góc AOB=DOB=180/2=90 độ
=> BI là đường trung trực của AD.
d/ Xét tam giác IAE và tam giác IDC có:
Góc AIE=DIC(đối đỉnh)
Góc IAE=IDC=90 độ
IA=ID(cạnh tương ứng của tam giác ABI=tam giác DBI)
=> Tam giác IAE=tam giác IDC(g-c-g)
=> AE=DC(cạnh tương ứng)
Mà AB=BD
=> BE=BC hay Tam giác BEC cân tại B
=> Góc BDA=BCE và 2 góc đó ở vị trí đồng vị nên AD//EC
Mà BI vuông góc với AD nên BI cũng vuông góc với EC.
Gọi N là giao điểm của BI và EC.
a/ Áp dụng định lí Pytago vào tam giác vu6ong ABC ta được:
AB2=BC2-AC2=102-82=62
=> AB=6 cm.
b/ Xét tam giác ABI và tam giác DBI có:
BI chung
Góc IAB=IDB=90 độ
Góc IBA=IBD(phân giác IB)
=> Tam giác ABI=tam giác DBI(ch-gn)
c/ Gọi O là giao điểm AD và IB.
Vì tam giác ABI=tam giác DBI(câu b)
=> AB=BD(cạnh tương ứng)
Xét tam giác OBA và tam giác OBD có:
BO chung
Góc OBD=OBA(phân giác BI)
AB=BD(cmt)
=> Tam giác OBA=tam giác OBD(c-g-c)
=> OA=OD(cạnh tương ứng) và Góc AOB=DOB=180/2=90 độ
=> BI là đường trung trực của AD.
d/ Xét tam giác IAE và tam giác IDC có:
Góc AIE=DIC(đối đỉnh)
Góc IAE=IDC=90 độ
IA=ID(cạnh tương ứng của tam giác ABI=tam giác DBI)
=> Tam giác IAE=tam giác IDC(g-c-g)
=> AE=DC(cạnh tương ứng)
Mà AB=BD
=> BE=BC hay Tam giác BEC cân tại B
=> Góc BDA=BCE và 2 góc đó ở vị trí đồng vị nên AD//EC
Mà BI vuông góc với AD nên BI cũng vuông góc với EC.
Gọi N là giao điểm của BI và EC.
a: Xét ΔAIB vuông tại A và ΔDIB vuông tại D có
IB chung
\(\widehat{ABI}=\widehat{DBI}\)
Do đó: ΔAIB=ΔDIB
b: Ta có: ΔAIB=ΔDIB
nên AI=DI; BA=BD
Ta có: IA=ID
nên I nằm trên đường trung trực của AD(1)
Ta có: BA=BD
nên B nằm trên dường trung trực của AD(2)
Từ (1) và (2) suy ra BI⊥AD
c:Xét ΔAIE vuông tại A và ΔDIC vuông tại D có
IA=ID
\(\widehat{AIE}=\widehat{DIC}\)
Do đó: ΔAIE=ΔDIC
Suy ra: AE=DC
Xét ΔBEC có
BA/AE=BD/DC
nên AD//EC
d: Xét ΔIEC có IE=IC
nên ΔIEC cân tại I
a:Xet ΔBAI vuông tại A và ΔBDI vuông tại D có
BI chung
góc ABI=góc DBI
=>ΔBAI=ΔBDI
b: Xét ΔIAE vuông tại A và ΔIDC vuông tại D có
IA=ID
góc AIE=góc DIC
=>ΔIAE=ΔIDC
=>IE=IC
c: IA=ID
mà ID<IC
nên IA<IC
tam giác ABC , góc A = 90 độ
=> AB2 + AC2 = BC2 ( định lí Pi-ta-go)
=> AB2 = 102 - 82 = 36
=> AB = 6
xét tam giác AIB và tam giác DIB có:
góc A = góc D (= 90 độ)
góc ABI = góc DBI ( BI là phan giác )
=> tam giác ABI = tam giác DBI ( cạnh huyền - góc nhọn) (*)
gọi Bi giao AD = N
(*) => BA =BD (1)
tam giác BAN = tam giác BDN ( c.g.c)
=> góc BNA = góc BND ; AN = ND => BI là trung trực
(*)=> AI = ID => tam giác AID cân tại I => góc DAI = góc ADI
Tam giác ADE = tam giác ADC ( g.c.g) => AE = DC (2)
từ (1) và (2) => BE = BC
BI giao EC = M
tam giác BEM = tam Giác BCM (c.g.c) => góc BME = góc BMC
=> BI vuông góc EC.
b: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có
BI chung
\(\widehat{ABI}=\widehat{DBI}\)
Do đó: ΔBAI=ΔBDI
Suy ra: BA=BD và IA=ID
Ta có: BA=BD
nên B nằm trên đường trung trực của AD\(\left(1\right)\)
Ta có: IA=ID
nên I nằm trên đường trung trực của AD\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BI là đường trung trực của AD
a: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có
BI chung
góc ABI=góc DBI
=>ΔBAI=ΔBDI
b: ΔBAI=ΔBDI
=>BA=BD và IA=ID
=>BI là trung trực của AD