K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2018

B A C D E H

giải:

a,gọi H là giao điểm của BD và AE

xét tam giác ABH và tam giác EBH có:

B1=B2. cạnh BH chung, góc AHB= góc EHB=90 độ

=> tam giác ABH= tam giác EBH(g.c.g)

=>BA=BE

b, xét tam giác ABD và tam giác EBD có:

BA=BE, B1=B2, cạnh BD chung

=>tam giác ABD= tam giác EBD(c.g.c)

=>góc A=góc BED=90 độ 

=> tam giác BED vuông tại E

28 tháng 4 2018

mk xin lỗi, mk đang vội, mk hứa sẽ làm xong bài này cho bn, sớm thôi.   (^-^)

23 tháng 2 2023

a.Xét ΔDAB,ΔDMBΔ���,Δ��� có:

ˆDAB=ˆDMB(=90o)���^=���^(=90�)

Chung BD��
ˆABD=ˆMBD���^=���^

→ΔDAB=ΔDMB→Δ���=Δ���(cạnh huyền-góc nhọn)

b.Từ câu a →BA=BM,DA=DM→��=��,��=��

→B,D∈→�,�∈ trung trực AM��

→DB→�� là trung trực AM��

c.Ta có: DM⊥BC→KD⊥BC��⊥��→��⊥��

               CA⊥AB→CD⊥BK��⊥��→��⊥��

→D→� là trực tâm ΔBCKΔ���

→BD⊥CK→��⊥��

→BN⊥KC→��⊥��

Xét ΔBMK,ΔBACΔ���,Δ��� có:

Chung ^B�^

BM=BA��=��

ˆBMK=ˆBAC(=90o)���^=���^(=90�)

→ΔBMK=ΔBAC(c.g.c)→Δ���=Δ���(�.�.�)

→BK=BC→��=��

→ΔKBC→Δ��� cân tại B�

d.Ta có: ΔBCKΔ��� cân tại B,BN⊥CK→N�,��⊥��→� là trung điểm KC��

Trên tia đối của tia NP�� lấy điểm F� sao cho NP=NF��=��

Xét ΔNKP,ΔNCFΔ���,Δ��� có:

NK=NC��=��

ˆKNP=ˆCNF���^=���^

NP=NF��=��

→ΔNKP=ΔNCF(c.g.c)→Δ���=Δ���(�.�.�)

→KP=CF,ˆNKP=ˆNCF→KP//CF→CF//BP→��=��,���^=���^→��//��→��//��

Xét ΔFPC,ΔBPCΔ���,Δ��� có:

ˆCPF=ˆPCB���^=���^ vì NP//BC��//��

Chung NP��

ˆPCF=ˆCPB���^=���^ vì BP//CF��//��

→ΔFPC=ΔBCP(g.c.g)→Δ���=Δ���(�.�.�)

→CF=BP→��=��

→PK=BP→��=��

→P→� là trung điểm BK��

Do E,N�,� là trung điểm BC,CK��,��

→KE,BN,CP→��,��,�� đồng quy tại trọng tâm ΔKBCΔ��� 

21 tháng 5 2018

hình tự vẽ bn nha                                                                                                                                                                               a) ta có:tam giác abc vuông tại a =>  bac = 90                                                                                                                                xét tam giác abc có: abc + acb + cab = 180(t/c)                                                                                                                                      mà bac = 90(cmt)     ;     acb = 36(gt)                                                                                                                                                => 90 +36 + abc = 180                                                                                                                                                                           126 + abc = 180                                                                                                                                                                                abc= 54                                                                                                                                                                               

b) ta có: abd = ebd ( vì bd là phân giác của abc)                                                                                                                                 xét tam giác abd và tam giác ebd có:  ba=be(gt)      ;    abd=ebd(cmt)      :     chung cạnh bd                                                             => tam giác abd = tam giác ebd ( c.g.c) (đpcm)                                                                                                                          

c) ta có: xy vuông góc với ab(gt) => tam giác abk vuông tại b                                                                                                      tam giác abc vuông tại a(gt) => ab vuông góc với ac                                                                                                                        ta có: xy vuông góc với ab (gt)                                                                                                                                                                ab vuông góc với ac(cmt)                                                                                                                                                          => xy song song với ac(t/c)                                                                                                                                                          => bak = abd ( so le trong)                                                                                                                                                         xét tam giác abk vuông tại b và tam giác bad vuông tại a có:  bak=abd(cmt)          ;     chung cạnh ba                                                => tam giác abk= tam giác abd ( cgv-gnk)                                                                                                                                        => ak=bd(2 cạnh tương ứng)                                                                                                                                                      

21 tháng 5 2018

umk mk cảm ơn nhưng có hơi lỗi :(

28 tháng 12 2018

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD

31 tháng 5 2019

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD