Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
góc B chung
=>ΔAHB đồng dạng với ΔCAB
b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
HB=15^2/20=9cm
c: AD*AB=AH^2
AE*AC=AH^2
=>AD*AB=AE*AC
a: Xét ΔAHB vuông tại H và ΔADH vuông tại D có
góc HAB chung
Do đó: ΔAHB\(\sim\)ΔADH
Xét ΔAHC vuông tại H và ΔAEH vuông tại E có
góc HAC chung
DO đó: ΔAHC\(\sim\)ΔAEH
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
Cho Tam giác ABC vuông tại A(AB<AC) có đường cao ah.a chứng minh Tam giác BAH đồng dạng với Tam giác BCA.b vẽ BD là đường phân giác của Tam giác ABC cắt AH tại k. Chứng minh BA.BK=BD.BH.c qua C kẻ đường thẳng vuông góc với BD tại E. Chứng minh AE=EC.
a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABC}\) chung
Do đó; ΔAHB\(\sim\)ΔCAB
Suy ra: AB/CB=HB/AB
hay \(AB^2=HB\cdot BC\)
b: BC=25cm
BH=225:25=9(cm)
CH=25-9=16(cm)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
a: Xét ΔADH vuông tại D và ΔAHB vuông tại H có
góc DAH chung
=>ΔADH đồg dạng vơi ΔAHB
b: ΔAHB vuông tại H có HD là đường cao
nên AD*AB=AH^2
ΔAHC vuông tại H có HE là đường cao
nên AE*AC=AH^2
=>AE*AC=AD*AB
Giải: a) Ta có : \(S_{\Delta ABC}\)= \(\frac{AH.BC}{2}\) (1)
\(S_{\Delta ABC}\)= \(\frac{AB.AC}{2}\) (2)
Từ (1) và (2) suy ra \(\frac{AH.BC}{2}=\frac{AB.AC}{2}\) => AH.BC = AB.AC (Đpcm)
b) Xét t/giác ABC vuông tại A (áp dụng định lí Pi - ta - go)
Ta có: BC2 = AB2 + AC2 = 152 + 202 = 225 + 400 = 625
=> BC = 25
Ta có: AH.BC = AB.AC (cmt)
hay AH. 25 = 15.20
=> AH.25 = 300
=> AH = 300 : 25
=> AH = 12
c) chưa hc
Lời giải:
a. Xét tam giác $AHB$ và $CAB$ có:
$\widehat{AHB}=\widehat{CAB}=90^0$
$\widehat{B}$ chung
$\Rightarrow \triangle AHB\sim \triangle CAB$ (g.g)
b. Từ tam giác đồng dạng phần a suy ra:
$\frac{HB}{AB}=\frac{AB}{CB}$
$\Rightarrow HB=\frac{AB^2}{BC}=\frac{AB^2}{\sqrt{AB^2+AC^2}}=\frac{15^2}{\sqrt{15^2+20^2}}=9$ (cm)
c. Xét tam giác $AHD$ và $ABH$ có:
$\widehat{A}$ chung
$\widehat{ADH}=\widehat{AHB}=90^0$
$\Righarrow \triangle AHD\sim \triangle ABH$ (g.g)
$\Rightarrow \frac{AH}{AB}=\frac{AD}{AH}$
$\Rightarrow AB.AD=AH^2(*)$
Tương tự ta cũng chỉ ra $\triangle AHE\sim \triangle ACH$ (g.g)
$\Rightarrow AE.AC=AH^2(**)$
Từ $(*); (**)\Rightarrow AB.AD=AE.AC$ (đpcm)
Hình vẽ: